Update simple-graph implementation to track discovery and finish time

+ Allows result of topological sort to match examples shown in MIT Algorithms
+ Correct order of initialization for all graphs and adjacent nodes in graph.cpp
+ Provide overloaded DFS for beginning at a specific node within the graph
This commit is contained in:
2021-07-10 13:13:50 -04:00
parent 3d0dfa63d1
commit 166d998508
3 changed files with 155 additions and 62 deletions

View File

@@ -1,10 +1,10 @@
/*#############################################################################
## Author: Shaun Reed ##
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
## About: Driver program to test a simple graph implementation ##
## ##
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
###############################################################################
/*##############################################################################
## Author: Shaun Reed ##
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
## About: Driver program to test a simple graph implementation ##
## ##
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
################################################################################
*/
#include "lib-graph.hpp"
@@ -13,17 +13,17 @@
int main (const int argc, const char * argv[])
{
// We could initialize the graph with some localNodes...
std::map<int, std::set<int>> localNodes{
{1, {2, 5}}, // Node 1
{2, {1, 6}}, // Node 2
{3, {4, 6, 7}},
{4, {3, 7, 8}},
std::unordered_map<int, std::unordered_set<int>> localNodes{
{8, {6, 4}},
{7, {8, 6, 4, 3}},
{6, {7, 3, 2}},
{5, {1}},
{6, {2, 3, 7}},
{7, {3, 4, 6, 8}},
{8, {4, 6}},
{4, {8, 7, 3}},
{3, {7, 6, 4}},
{2, {6, 1}}, // Node 2...
{1, {5, 2}}, // Node 1
};
// Graph bfsGraph(localNodes);
Graph exampleGraph(localNodes);
std::cout << "\n\n##### Breadth First Search #####\n";
@@ -31,14 +31,14 @@ int main (const int argc, const char * argv[])
// Initialize a example graph for Breadth First Search
Graph bfsGraph (
{
{1, {2, 5}}, // Node 1
{2, {1, 6}}, // Node 2...
{3, {4, 6, 7}},
{4, {3, 7, 8}},
{8, {6, 4}},
{7, {8, 6, 4, 3}},
{6, {7, 3, 2}},
{5, {1}},
{6, {2, 3, 7}},
{7, {3, 4, 6, 8}},
{8, {4, 6}},
{4, {8, 7, 3}},
{3, {7, 6, 4}},
{2, {6, 1}}, // Node 2...
{1, {5, 2}}, // Node 1
}
);
// The graph traversed in this example is seen in MIT Intro to Algorithms
@@ -50,12 +50,12 @@ int main (const int argc, const char * argv[])
// Initialize an example graph for Depth First Search
Graph dfsGraph (
{
{1, {2, 4}},
{2, {5}},
{3, {5, 6}},
{4, {2}},
{5, {4}},
{6, {6}},
{5, {4}},
{4, {2}},
{3, {6, 5}},
{2, {5}},
{1, {4, 2}},
}
);
// The graph traversed in this example is seen in MIT Intro to Algorithms
@@ -67,32 +67,62 @@ int main (const int argc, const char * argv[])
// Initialize an example graph for Topological Sort
Graph topologicalGraph (
{
{1, {4, 5}},
{2, {5}},
{3, {}},
{4, {5, 7}},
{5, {}},
{6, {7, 8}},
{7, {9}},
{8, {9}},
{9, {}},
{8, {9}},
{7, {9}},
{6, {7, 8}},
{5, {}},
{4, {7, 5}},
{3, {}},
{2, {5}},
{1, {5, 4}},
}
);
auto order = topologicalGraph.TopologicalSort(topologicalGraph.GetNode(6));
std::cout << "\nTopological order: ";
while (!order.empty()) {
std::cout << order.back() << " ";
order.pop_back();
}
std::cout << std::endl << std::endl;
// If we want the topological order to match what is seen in the book
// + We have to initialize the graph carefully to get this result -
// Because this is an unordered_(map/set) initialization is reversed
// + So the order of nodes on the container below is 6,7,8,9,3,1,4,5,2
// + The same concept applies to their adjacent nodes (7,8 initializes to 8,7)
// + In object-graph implementation, I use vectors this does not apply there
Graph topologicalGraph2 (
{
{2, {5}}, // socks
{5, {}}, // shoes
{4, {7, 5}}, // pants
{1, {5, 4}}, // undershorts
{3, {}}, // watch
{9, {}}, // jacket
{7, {9}}, // belt
{8, {9}}, // tie
{6, {7, 8}}, // shirt
}
);
// The graph traversed in this example is seen in MIT Intro to Algorithms
// + Chapter 22, Figure 22.7 on Topological Sort
// + Each node was replaced with a value from left-to-right, top-to-bottom
// + Undershorts = 1, Socks = 2, Watch = 3, Pants = 4, etc...
std::vector<int> order = topologicalGraph.TopologicalSort();
std::vector<int> order2 =
topologicalGraph2.TopologicalSort(topologicalGraph2.NodeBegin());
// Because this is a simple graph with no objects to store finishing time
// + The result is only one example of valid topological order
// + There are other valid orders; Final result differs from one in the book
std::cout << "\n\nTopological order: ";
while (!order.empty()) {
std::cout << order.back() << " ";
order.pop_back();
std::cout << "\nTopological order: ";
while (!order2.empty()) {
std::cout << order2.back() << " ";
order2.pop_back();
}
std::cout << std::endl;
std::cout << std::endl;
return 0;
}