Add pathing using BFS within the simple-graph example
This commit is contained in:
parent
166d998508
commit
2a36de7c52
|
@ -13,6 +13,9 @@
|
||||||
int main (const int argc, const char * argv[])
|
int main (const int argc, const char * argv[])
|
||||||
{
|
{
|
||||||
// We could initialize the graph with some localNodes...
|
// We could initialize the graph with some localNodes...
|
||||||
|
// This graph uses an unordered_(map/set), so initialization is reversed
|
||||||
|
// + So the final order of initialization is 1,2,3,4,5,6,7,8
|
||||||
|
// + Similarly, adjacent nodes are inserted at front (6,4 initializes to 4,6)
|
||||||
std::unordered_map<int, std::unordered_set<int>> localNodes{
|
std::unordered_map<int, std::unordered_set<int>> localNodes{
|
||||||
{8, {6, 4}},
|
{8, {6, 4}},
|
||||||
{7, {8, 6, 4, 3}},
|
{7, {8, 6, 4, 3}},
|
||||||
|
@ -45,6 +48,17 @@ int main (const int argc, const char * argv[])
|
||||||
// + Chapter 22, Figure 22.3 on BFS
|
// + Chapter 22, Figure 22.3 on BFS
|
||||||
bfsGraph.BFS(2);
|
bfsGraph.BFS(2);
|
||||||
|
|
||||||
|
std::cout << "\nTesting finding a path between two nodes using BFS...\n";
|
||||||
|
auto path = bfsGraph.PathBFS(1, 7);
|
||||||
|
if (path.empty()) std::cout << "No valid path found!\n";
|
||||||
|
else {
|
||||||
|
std::cout << "\nValid path from " << path.front() << " to "
|
||||||
|
<< path.back() << ": ";
|
||||||
|
for (const auto &node : path) {
|
||||||
|
std::cout << node << " ";
|
||||||
|
}
|
||||||
|
std::cout << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
std::cout << "\n\n##### Depth First Search #####\n";
|
std::cout << "\n\n##### Depth First Search #####\n";
|
||||||
// Initialize an example graph for Depth First Search
|
// Initialize an example graph for Depth First Search
|
||||||
|
@ -64,18 +78,22 @@ int main (const int argc, const char * argv[])
|
||||||
|
|
||||||
|
|
||||||
std::cout << "\n\n##### Topological Sort #####\n";
|
std::cout << "\n\n##### Topological Sort #####\n";
|
||||||
|
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||||||
|
// + Chapter 22, Figure 22.4 on DFS
|
||||||
// Initialize an example graph for Topological Sort
|
// Initialize an example graph for Topological Sort
|
||||||
|
// + The final result will place node 3 (watch) at the beginning of the order
|
||||||
|
// + This is because node 3 has no connecting node
|
||||||
Graph topologicalGraph (
|
Graph topologicalGraph (
|
||||||
{
|
{
|
||||||
{9, {}},
|
{9, {}}, // jacket
|
||||||
{8, {9}},
|
{8, {9}}, // tie
|
||||||
{7, {9}},
|
{7, {9}}, // belt
|
||||||
{6, {7, 8}},
|
{6, {7, 8}}, // shirt
|
||||||
{5, {}},
|
{5, {}}, // shoes
|
||||||
{4, {7, 5}},
|
{4, {7, 5}}, // pants
|
||||||
{3, {}},
|
{3, {}}, // watch
|
||||||
{2, {5}},
|
{2, {5}}, // socks
|
||||||
{1, {5, 4}},
|
{1, {5, 4}}, // undershorts
|
||||||
}
|
}
|
||||||
);
|
);
|
||||||
auto order = topologicalGraph.TopologicalSort(topologicalGraph.GetNode(6));
|
auto order = topologicalGraph.TopologicalSort(topologicalGraph.GetNode(6));
|
||||||
|
@ -86,9 +104,9 @@ int main (const int argc, const char * argv[])
|
||||||
}
|
}
|
||||||
std::cout << std::endl << std::endl;
|
std::cout << std::endl << std::endl;
|
||||||
|
|
||||||
// If we want the topological order to match what is seen in the book
|
// If we want the topological order to exactly match what is seen in the book
|
||||||
// + We have to initialize the graph carefully to get this result -
|
// + We have to initialize the graph carefully to get this result -
|
||||||
// Because this is an unordered_(map/set) initialization is reversed
|
// This graph uses an unordered_(map/set), so initialization is reversed
|
||||||
// + So the order of nodes on the container below is 6,7,8,9,3,1,4,5,2
|
// + So the order of nodes on the container below is 6,7,8,9,3,1,4,5,2
|
||||||
// + The same concept applies to their adjacent nodes (7,8 initializes to 8,7)
|
// + The same concept applies to their adjacent nodes (7,8 initializes to 8,7)
|
||||||
// + In object-graph implementation, I use vectors this does not apply there
|
// + In object-graph implementation, I use vectors this does not apply there
|
||||||
|
@ -122,7 +140,5 @@ int main (const int argc, const char * argv[])
|
||||||
}
|
}
|
||||||
std::cout << std::endl;
|
std::cout << std::endl;
|
||||||
|
|
||||||
std::cout << std::endl;
|
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
|
@ -16,6 +16,9 @@ void Graph::BFS(int startNode)
|
||||||
{
|
{
|
||||||
// Track the nodes we have discovered
|
// Track the nodes we have discovered
|
||||||
std::vector<bool> discovered(nodes_.size(), false);
|
std::vector<bool> discovered(nodes_.size(), false);
|
||||||
|
// Reset values of predecessor and distance JIC there was a previous traversal
|
||||||
|
for (auto &p : predecessor) p = std::make_pair(0, INT32_MIN);
|
||||||
|
for (auto &d : distance) d = std::make_pair(0, 0);
|
||||||
|
|
||||||
// Create a queue to visit discovered nodes in FIFO order
|
// Create a queue to visit discovered nodes in FIFO order
|
||||||
std::queue<int> visitQueue;
|
std::queue<int> visitQueue;
|
||||||
|
@ -37,6 +40,14 @@ void Graph::BFS(int startNode)
|
||||||
for (const auto &adjacent : nodes_[thisNode]) {
|
for (const auto &adjacent : nodes_[thisNode]) {
|
||||||
if (!discovered[adjacent - 1]) {
|
if (!discovered[adjacent - 1]) {
|
||||||
std::cout << "Found undiscovered adjacentNode: " << adjacent << "\n";
|
std::cout << "Found undiscovered adjacentNode: " << adjacent << "\n";
|
||||||
|
|
||||||
|
// Update the distance from the start node
|
||||||
|
distance[adjacent - 1] =
|
||||||
|
std::make_pair(adjacent, distance[thisNode - 1].second + 1);
|
||||||
|
// Update the predecessor for the adjacent node when we discover it
|
||||||
|
// + The node that first discovers the adjacent is the predecessor
|
||||||
|
predecessor[adjacent - 1] = std::make_pair(adjacent, thisNode);
|
||||||
|
|
||||||
// Mark the adjacent node as discovered
|
// Mark the adjacent node as discovered
|
||||||
// + If this were done out of the for loop we could discover nodes twice
|
// + If this were done out of the for loop we could discover nodes twice
|
||||||
// + This would result in visiting the node twice, since it appears
|
// + This would result in visiting the node twice, since it appears
|
||||||
|
@ -52,6 +63,32 @@ void Graph::BFS(int startNode)
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::deque<int> Graph::PathBFS(int start, int finish)
|
||||||
|
{
|
||||||
|
// Store the path as a deque of integers so we can push to the front and back
|
||||||
|
std::deque<int> path;
|
||||||
|
// Perform BFS on the start node, updating all possible predecessors
|
||||||
|
BFS(start);
|
||||||
|
// Begin at the finish node's predecessor
|
||||||
|
int next = predecessor[finish - 1].second;
|
||||||
|
bool isValid = false;
|
||||||
|
do {
|
||||||
|
// If the next node is the start node, we have found a valid path
|
||||||
|
if (next == start) isValid = true;
|
||||||
|
// Add the next node to the path
|
||||||
|
path.push_front(next);
|
||||||
|
// Move to the predecessor of the next node
|
||||||
|
next = predecessor[next - 1].second;
|
||||||
|
} while (next != INT32_MIN); // If we hit a node with no predecessor, break
|
||||||
|
// Push the finish node the end of the path
|
||||||
|
// + We could do this prior to the loop with push_front.. but, deques :)
|
||||||
|
path.push_back(finish);
|
||||||
|
// If we never found a valid path, erase the path
|
||||||
|
if (!isValid) path.erase(path.begin(), path.end());
|
||||||
|
// Return the path, the caller should handle the case where the path is empty
|
||||||
|
return path;
|
||||||
|
}
|
||||||
|
|
||||||
void Graph::DFS()
|
void Graph::DFS()
|
||||||
{
|
{
|
||||||
// Track the nodes we have discovered
|
// Track the nodes we have discovered
|
||||||
|
|
|
@ -11,9 +11,7 @@
|
||||||
#define LIB_GRAPH_HPP
|
#define LIB_GRAPH_HPP
|
||||||
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <map>
|
|
||||||
#include <queue>
|
#include <queue>
|
||||||
#include <set>
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <unordered_map>
|
#include <unordered_map>
|
||||||
#include <unordered_set>
|
#include <unordered_set>
|
||||||
|
@ -26,9 +24,12 @@ public:
|
||||||
{
|
{
|
||||||
discoveryTime.resize(nodes_.size());
|
discoveryTime.resize(nodes_.size());
|
||||||
finishTime.resize(nodes_.size(), std::make_pair(0,0));
|
finishTime.resize(nodes_.size(), std::make_pair(0,0));
|
||||||
|
predecessor.resize(nodes_.size(), std::make_pair(0, INT32_MIN));
|
||||||
|
distance.resize(nodes_.size(), std::make_pair(0, 0));
|
||||||
}
|
}
|
||||||
|
|
||||||
void BFS(int startNode);
|
void BFS(int startNode);
|
||||||
|
std::deque<int> PathBFS(int start, int finish);
|
||||||
|
|
||||||
void DFS();
|
void DFS();
|
||||||
void DFS(Node::iterator startNode);
|
void DFS(Node::iterator startNode);
|
||||||
|
@ -52,6 +53,8 @@ private:
|
||||||
// Unordered to avoid container reorganizing elements
|
// Unordered to avoid container reorganizing elements
|
||||||
// + Since this would alter the order nodes are traversed in
|
// + Since this would alter the order nodes are traversed in
|
||||||
Node nodes_;
|
Node nodes_;
|
||||||
|
std::vector<std::pair<int, int>> distance;
|
||||||
|
std::vector<std::pair<int, int>> predecessor;
|
||||||
|
|
||||||
// Where the first element in the following two pairs is the node number
|
// Where the first element in the following two pairs is the node number
|
||||||
// And the second element is the discovery / finish time
|
// And the second element is the discovery / finish time
|
||||||
|
|
Loading…
Reference in New Issue