Add pathing using BFS within the simple-graph example
This commit is contained in:
parent
166d998508
commit
2a36de7c52
|
@ -13,6 +13,9 @@
|
|||
int main (const int argc, const char * argv[])
|
||||
{
|
||||
// We could initialize the graph with some localNodes...
|
||||
// This graph uses an unordered_(map/set), so initialization is reversed
|
||||
// + So the final order of initialization is 1,2,3,4,5,6,7,8
|
||||
// + Similarly, adjacent nodes are inserted at front (6,4 initializes to 4,6)
|
||||
std::unordered_map<int, std::unordered_set<int>> localNodes{
|
||||
{8, {6, 4}},
|
||||
{7, {8, 6, 4, 3}},
|
||||
|
@ -45,6 +48,17 @@ int main (const int argc, const char * argv[])
|
|||
// + Chapter 22, Figure 22.3 on BFS
|
||||
bfsGraph.BFS(2);
|
||||
|
||||
std::cout << "\nTesting finding a path between two nodes using BFS...\n";
|
||||
auto path = bfsGraph.PathBFS(1, 7);
|
||||
if (path.empty()) std::cout << "No valid path found!\n";
|
||||
else {
|
||||
std::cout << "\nValid path from " << path.front() << " to "
|
||||
<< path.back() << ": ";
|
||||
for (const auto &node : path) {
|
||||
std::cout << node << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
std::cout << "\n\n##### Depth First Search #####\n";
|
||||
// Initialize an example graph for Depth First Search
|
||||
|
@ -64,18 +78,22 @@ int main (const int argc, const char * argv[])
|
|||
|
||||
|
||||
std::cout << "\n\n##### Topological Sort #####\n";
|
||||
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||||
// + Chapter 22, Figure 22.4 on DFS
|
||||
// Initialize an example graph for Topological Sort
|
||||
// + The final result will place node 3 (watch) at the beginning of the order
|
||||
// + This is because node 3 has no connecting node
|
||||
Graph topologicalGraph (
|
||||
{
|
||||
{9, {}},
|
||||
{8, {9}},
|
||||
{7, {9}},
|
||||
{6, {7, 8}},
|
||||
{5, {}},
|
||||
{4, {7, 5}},
|
||||
{3, {}},
|
||||
{2, {5}},
|
||||
{1, {5, 4}},
|
||||
{9, {}}, // jacket
|
||||
{8, {9}}, // tie
|
||||
{7, {9}}, // belt
|
||||
{6, {7, 8}}, // shirt
|
||||
{5, {}}, // shoes
|
||||
{4, {7, 5}}, // pants
|
||||
{3, {}}, // watch
|
||||
{2, {5}}, // socks
|
||||
{1, {5, 4}}, // undershorts
|
||||
}
|
||||
);
|
||||
auto order = topologicalGraph.TopologicalSort(topologicalGraph.GetNode(6));
|
||||
|
@ -86,9 +104,9 @@ int main (const int argc, const char * argv[])
|
|||
}
|
||||
std::cout << std::endl << std::endl;
|
||||
|
||||
// If we want the topological order to match what is seen in the book
|
||||
// If we want the topological order to exactly match what is seen in the book
|
||||
// + We have to initialize the graph carefully to get this result -
|
||||
// Because this is an unordered_(map/set) initialization is reversed
|
||||
// This graph uses an unordered_(map/set), so initialization is reversed
|
||||
// + So the order of nodes on the container below is 6,7,8,9,3,1,4,5,2
|
||||
// + The same concept applies to their adjacent nodes (7,8 initializes to 8,7)
|
||||
// + In object-graph implementation, I use vectors this does not apply there
|
||||
|
@ -122,7 +140,5 @@ int main (const int argc, const char * argv[])
|
|||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
std::cout << std::endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -16,6 +16,9 @@ void Graph::BFS(int startNode)
|
|||
{
|
||||
// Track the nodes we have discovered
|
||||
std::vector<bool> discovered(nodes_.size(), false);
|
||||
// Reset values of predecessor and distance JIC there was a previous traversal
|
||||
for (auto &p : predecessor) p = std::make_pair(0, INT32_MIN);
|
||||
for (auto &d : distance) d = std::make_pair(0, 0);
|
||||
|
||||
// Create a queue to visit discovered nodes in FIFO order
|
||||
std::queue<int> visitQueue;
|
||||
|
@ -37,6 +40,14 @@ void Graph::BFS(int startNode)
|
|||
for (const auto &adjacent : nodes_[thisNode]) {
|
||||
if (!discovered[adjacent - 1]) {
|
||||
std::cout << "Found undiscovered adjacentNode: " << adjacent << "\n";
|
||||
|
||||
// Update the distance from the start node
|
||||
distance[adjacent - 1] =
|
||||
std::make_pair(adjacent, distance[thisNode - 1].second + 1);
|
||||
// Update the predecessor for the adjacent node when we discover it
|
||||
// + The node that first discovers the adjacent is the predecessor
|
||||
predecessor[adjacent - 1] = std::make_pair(adjacent, thisNode);
|
||||
|
||||
// Mark the adjacent node as discovered
|
||||
// + If this were done out of the for loop we could discover nodes twice
|
||||
// + This would result in visiting the node twice, since it appears
|
||||
|
@ -52,6 +63,32 @@ void Graph::BFS(int startNode)
|
|||
|
||||
}
|
||||
|
||||
std::deque<int> Graph::PathBFS(int start, int finish)
|
||||
{
|
||||
// Store the path as a deque of integers so we can push to the front and back
|
||||
std::deque<int> path;
|
||||
// Perform BFS on the start node, updating all possible predecessors
|
||||
BFS(start);
|
||||
// Begin at the finish node's predecessor
|
||||
int next = predecessor[finish - 1].second;
|
||||
bool isValid = false;
|
||||
do {
|
||||
// If the next node is the start node, we have found a valid path
|
||||
if (next == start) isValid = true;
|
||||
// Add the next node to the path
|
||||
path.push_front(next);
|
||||
// Move to the predecessor of the next node
|
||||
next = predecessor[next - 1].second;
|
||||
} while (next != INT32_MIN); // If we hit a node with no predecessor, break
|
||||
// Push the finish node the end of the path
|
||||
// + We could do this prior to the loop with push_front.. but, deques :)
|
||||
path.push_back(finish);
|
||||
// If we never found a valid path, erase the path
|
||||
if (!isValid) path.erase(path.begin(), path.end());
|
||||
// Return the path, the caller should handle the case where the path is empty
|
||||
return path;
|
||||
}
|
||||
|
||||
void Graph::DFS()
|
||||
{
|
||||
// Track the nodes we have discovered
|
||||
|
|
|
@ -11,9 +11,7 @@
|
|||
#define LIB_GRAPH_HPP
|
||||
|
||||
#include <iostream>
|
||||
#include <map>
|
||||
#include <queue>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
|
@ -26,9 +24,12 @@ public:
|
|||
{
|
||||
discoveryTime.resize(nodes_.size());
|
||||
finishTime.resize(nodes_.size(), std::make_pair(0,0));
|
||||
predecessor.resize(nodes_.size(), std::make_pair(0, INT32_MIN));
|
||||
distance.resize(nodes_.size(), std::make_pair(0, 0));
|
||||
}
|
||||
|
||||
void BFS(int startNode);
|
||||
std::deque<int> PathBFS(int start, int finish);
|
||||
|
||||
void DFS();
|
||||
void DFS(Node::iterator startNode);
|
||||
|
@ -52,6 +53,8 @@ private:
|
|||
// Unordered to avoid container reorganizing elements
|
||||
// + Since this would alter the order nodes are traversed in
|
||||
Node nodes_;
|
||||
std::vector<std::pair<int, int>> distance;
|
||||
std::vector<std::pair<int, int>> predecessor;
|
||||
|
||||
// Where the first element in the following two pairs is the node number
|
||||
// And the second element is the discovery / finish time
|
||||
|
|
Loading…
Reference in New Issue