Update object graph implementation to track node discover and finish time
+ Allows traversal and topological sort algorithms to show examples from MIT Algorithms more accurately
This commit is contained in:
parent
5d37db1ce2
commit
348586ec38
|
@ -16,3 +16,4 @@ project (
|
|||
)
|
||||
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(object)
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
int main (const int argc, const char * argv[])
|
||||
{
|
||||
// We could initialize the graph with some localNodes...
|
||||
std::map<int, std::set<int>> localNodes{
|
||||
std::map<int, std::vector<int>> localNodes{
|
||||
{1, {2, 5}}, // Node 1
|
||||
{2, {1, 6}}, // Node 2
|
||||
{3, {4, 6, 7}},
|
||||
|
@ -26,13 +26,6 @@ int main (const int argc, const char * argv[])
|
|||
};
|
||||
// Graph bfsGraph(localNodes);
|
||||
|
||||
// Graph testGraph(
|
||||
// {
|
||||
// {Node(1, {2, 5})},
|
||||
//// {Node(1, {2, 5})},
|
||||
// }
|
||||
// )
|
||||
|
||||
|
||||
std::cout << "\n\n##### Breadth First Search #####\n";
|
||||
// Or we could use an initializer list...
|
||||
|
@ -77,19 +70,20 @@ int main (const int argc, const char * argv[])
|
|||
// Initialize an example graph for Depth First Search
|
||||
Graph topologicalGraph (
|
||||
{
|
||||
{1, {4, 5}},
|
||||
{2, {5}},
|
||||
{3, {}},
|
||||
{4, {5, 7}},
|
||||
{5, {}},
|
||||
{6, {7, 8}},
|
||||
{7, {9}},
|
||||
{8, {9}},
|
||||
{9, {}},
|
||||
{6, {8, 7}}, // shirt
|
||||
{8, {9}}, // tie
|
||||
{7, {9}}, // belt
|
||||
{9, {}}, // jacket
|
||||
{3, {}}, // watch
|
||||
{1, {4, 5}}, // undershorts
|
||||
{4, {5, 7}}, // pants
|
||||
{5, {}}, // shoes
|
||||
{2, {5}}, // socks
|
||||
}
|
||||
);
|
||||
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||||
// + Chapter 22, Figure 22.4 on DFS
|
||||
// Unlike the simple-graph example, this final result matches MIT Algorithms
|
||||
std::vector<Node> order = topologicalGraph.TopologicalSort();
|
||||
std::cout << "\n\nTopological order: ";
|
||||
while (!order.empty()) {
|
||||
|
|
|
@ -52,6 +52,7 @@ void Graph::DFS() const
|
|||
{
|
||||
// Track the nodes we have discovered
|
||||
for (const auto &node : nodes_) node.color = White;
|
||||
int time = 0;
|
||||
|
||||
// Visit each node in the graph
|
||||
for (const auto& node : nodes_) {
|
||||
|
@ -60,69 +61,43 @@ void Graph::DFS() const
|
|||
if (node.color == White) {
|
||||
std::cout << "Found undiscovered node: " << node.number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(node);
|
||||
DFSVisit(time, node);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Graph::DFSVisit(const Node& startNode) const
|
||||
void Graph::DFSVisit(int &time, const Node& startNode) const
|
||||
{
|
||||
startNode.color = Gray;
|
||||
time++;
|
||||
startNode.discoveryFinish.first = time;
|
||||
// Check the adjacent nodes of the startNode
|
||||
for (const auto &adjacent : startNode.adjacent) {
|
||||
auto iter = std::find(nodes_.begin(), nodes_.end(),
|
||||
Node(adjacent, {}));
|
||||
// If the adjacentNode is undiscovered, visit it
|
||||
// + Offset by 1 to account for 0 index of discovered vector
|
||||
if (nodes_[adjacent - 1].color == White) {
|
||||
if (iter->color == White) {
|
||||
std::cout << "Found undiscovered adjacentNode: "
|
||||
<< nodes_[adjacent - 1].number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(nodes_[adjacent - 1]);
|
||||
DFSVisit(time, *iter);
|
||||
}
|
||||
}
|
||||
startNode.color = Black;
|
||||
time++;
|
||||
startNode.discoveryFinish.second = time;
|
||||
}
|
||||
|
||||
std::vector<Node> Graph::TopologicalSort() const
|
||||
{
|
||||
std::vector<Node> topologicalOrder;
|
||||
DFS();
|
||||
std::vector<Node> topological(nodes_);
|
||||
|
||||
// Track the nodes we have discovered
|
||||
for (const auto &node : nodes_) node.color = White;
|
||||
|
||||
// Visit each node in the graph
|
||||
for (const auto &node : nodes_) {
|
||||
std::cout << "Visiting node " << node.number << std::endl;
|
||||
// If the node is undiscovered, visit it
|
||||
if (node.color == White) {
|
||||
std::cout << "Found undiscovered node: " << node.number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
TopologicalVisit(node, topologicalOrder);
|
||||
}
|
||||
}
|
||||
std::sort(topological.begin(), topological.end(), Node::FinishedSort);
|
||||
|
||||
// The topologicalOrder is read right-to-left in the final result
|
||||
// + Output is handled in main as FILO, similar to a stack
|
||||
return topologicalOrder;
|
||||
}
|
||||
|
||||
void Graph::TopologicalVisit(const Node &startNode,
|
||||
std::vector<Node> &order) const
|
||||
{
|
||||
// Mark the node as visited so we don't visit it twice
|
||||
startNode.color = Gray;
|
||||
|
||||
// Check the adjacent nodes of the startNode
|
||||
for (const auto& adjacent : startNode.adjacent) {
|
||||
// If the adjacentNode is undiscovered, visit it
|
||||
if (nodes_[adjacent - 1].color == White) {
|
||||
std::cout << "Found undiscovered adjacentNode: " << adjacent << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
TopologicalVisit(nodes_[adjacent - 1], order);
|
||||
}
|
||||
}
|
||||
startNode.color = Black;
|
||||
|
||||
// Add startNode to the topologicalOrder
|
||||
order.push_back(startNode);
|
||||
return topological;
|
||||
}
|
||||
|
|
|
@ -13,33 +13,48 @@
|
|||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <queue>
|
||||
|
||||
// A vertex can also be referred to as a node
|
||||
// + ... Unless you are a mathematician ^.^
|
||||
struct Vertex {
|
||||
// This vertex's number
|
||||
int number;
|
||||
// A set of all vertices adjacent to this vertex
|
||||
std::set<int> adjacent;
|
||||
};
|
||||
#include <unordered_set>
|
||||
|
||||
enum Color {White, Gray, Black};
|
||||
|
||||
struct Node {
|
||||
public:
|
||||
Node(int num, std::set<int> adj) : number(num), adjacent(std::move(adj)) {}
|
||||
Node(const Node &rhs) = default;
|
||||
Node & operator=(Node rhs) {
|
||||
if (this == &rhs) return *this;
|
||||
swap(*this, rhs);
|
||||
return *this;
|
||||
}
|
||||
friend void swap(Node &a, Node &b) {
|
||||
std::swap(a.number, b.number);
|
||||
std::swap(a.adjacent, b.adjacent);
|
||||
std::swap(a.color, b.color);
|
||||
std::swap(a.discoveryFinish, b.discoveryFinish);
|
||||
}
|
||||
|
||||
Node(int num, std::vector<int> adj) :
|
||||
number(num), adjacent(std::move(adj)) {}
|
||||
int number;
|
||||
std::set<int> adjacent;
|
||||
std::vector<int> adjacent;
|
||||
// Mutable so we can update the color of the nodes during traversal
|
||||
mutable Color color = White;
|
||||
std::vector<int> predecessors;
|
||||
// Create a pair to track discovery / finish time
|
||||
// + Discovery time is the iteration the node is first discovered
|
||||
// + Finish time is the iteration the node has been checked completely
|
||||
// ++ A finished node has considered all adjacent nodes
|
||||
mutable std::pair<int, int> discoveryFinish;
|
||||
|
||||
// bool operator<(const Node &node1) const { return number < node1.number;}
|
||||
inline void setColor(Color newColor) const { color = newColor;}
|
||||
// Define a comparator for std::sort
|
||||
// + This will help to sort nodes by finished time after traversal
|
||||
static bool FinishedSort(const Node &node1, const Node &node2)
|
||||
{ return node1.discoveryFinish.second < node2.discoveryFinish.second;}
|
||||
|
||||
|
||||
// Define operator== for std::find
|
||||
bool operator==(const Node &b) const { return this->number == b.number;}
|
||||
};
|
||||
|
||||
class Graph {
|
||||
|
@ -49,10 +64,8 @@ public:
|
|||
|
||||
void BFS(const Node& startNode) const;
|
||||
void DFS() const;
|
||||
void DFSVisit(const Node& startNode) const;
|
||||
void DFSVisit(int &time, const Node& startNode) const;
|
||||
std::vector<Node> TopologicalSort() const;
|
||||
void TopologicalVisit(const Node &startNode, std::vector<Node> &order) const;
|
||||
|
||||
};
|
||||
|
||||
#endif // LIB_GRAPH_HPP
|
||||
|
|
Loading…
Reference in New Issue