Clean up object-graph implementation

This commit is contained in:
Shaun Reed 2021-07-02 21:29:52 -04:00
parent 4a8b607ff6
commit 3d0dfa63d1
3 changed files with 48 additions and 36 deletions

View File

@ -51,15 +51,15 @@ int main (const int argc, const char * argv[])
// Test finding a path between two nodes using BFS
auto path = bfsGraph.PathBFS(
bfsGraph.GetNodeCopy(1), bfsGraph.GetNodeCopy(7)
);
);
// If we were returned an empty path, it doesn't exist
if (path.empty()) std::cout << "No valid path found!\n";
else {
// If we were returned a path, print it
std::cout << "\nValid path from " << path.front()->number
<< " to " << path.back()->number << ": ";
std::cout << "\nValid path from " << path.front().number
<< " to " << path.back().number << ": ";
for (const auto &node : path) {
std::cout << node->number << " ";
std::cout << node.number << " ";
}
std::cout << std::endl;
}
@ -109,12 +109,12 @@ int main (const int argc, const char * argv[])
// + This is because the node is visited after all other nodes are finished
std::vector<Node> order =
topologicalGraph.TopologicalSort(topologicalGraph.GetNodeCopy(6));
std::cout << "\n\nTopological order: ";
std::cout << "\nTopological order: ";
while (!order.empty()) {
std::cout << order.back().number << " ";
order.pop_back();
}
std::cout << std::endl;
std::cout << std::endl << std::endl;
// If we want the topological order to match what is seen in the book
// + We have to initialize the graph carefully to get this result -
@ -132,7 +132,7 @@ int main (const int argc, const char * argv[])
}
);
auto order2 = topologicalGraph2.TopologicalSort(*topologicalGraph2.NodeBegin());
std::cout << "\n\nTopological order: ";
std::cout << "\nTopological order: ";
while (!order2.empty()) {
std::cout << order2.back().number << " ";
order2.pop_back();

View File

@ -12,54 +12,55 @@
void Graph::BFS(const Node& startNode) const
{
// Track the nodes we have discovered
// TODO: Do this at the end to maintain the state instead of at beginning?
// Track the nodes we have discovered by their Color
for (const auto &node : nodes_) {
node.color = White;
// Track distance from the startNode
node.distance = 0;
// Track predecessor using node that discovers this node
// + If this is the startNode, predecessor remains nullptr
node.predecessor = nullptr;
}
// Create a queue to visit discovered nodes in FIFO order
std::queue<Node> visitQueue;
std::queue<const Node *> visitQueue;
// Mark the startNode as in progress until we finish checking adjacent nodes
startNode.color = Gray;
// startNode.distance = 0;
// startNode.predecessor = nullptr;
// Visit the startNode
visitQueue.push(startNode);
visitQueue.push(&startNode);
// Continue to visit nodes until there are none left in the graph
while (!visitQueue.empty()) {
// Remove thisNode from the visitQueue, storing its vertex locally
Node thisNode = visitQueue.front();
const Node * thisNode = visitQueue.front();
visitQueue.pop();
std::cout << "Visiting node " << thisNode.number << std::endl;
std::cout << "Visiting node " << thisNode->number << std::endl;
// Check if we have already discovered all the adjacentNodes to thisNode
for (const auto &adjacent : thisNode.adjacent) {
for (const auto &adjacent : thisNode->adjacent) {
if (GetNode(adjacent).color == White) {
std::cout << "Found undiscovered adjacentNode: " << adjacent << "\n";
// Mark the adjacent node as in progress
GetNode(adjacent).color = Gray;
GetNode(adjacent).distance = thisNode.distance + 1;
GetNode(adjacent).predecessor =
const_cast<Node *>(&GetNode(thisNode.number));
GetNode(adjacent).distance = thisNode->distance + 1;
GetNode(adjacent).predecessor = &GetNode(thisNode->number);
// Add the discovered node the the visitQueue
visitQueue.push(GetNode(adjacent));
visitQueue.push(&GetNode(adjacent));
}
}
// We are finished with this node and the adjacent nodes; Mark it discovered
GetNode(thisNode.number).color = Black;
GetNode(thisNode->number).color = Black;
}
}
std::deque<const Node *> Graph::PathBFS(const Node &start, const Node &finish) const
std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
{
std::deque<const Node *> path;
// Store the path as copies of each node
// + If the caller modifies these, it will not impact the graph's data
std::deque<Node> path;
BFS(start);
const Node * next = finish.predecessor;
@ -69,12 +70,14 @@ std::deque<const Node *> Graph::PathBFS(const Node &start, const Node &finish) c
if (*next == Node(start)) isValid = true;
// Add the node to the path as we check each node
path.push_front(next);
// + Use emplace_front to call the Node copy constructor
path.emplace_front(*next);
// Move to the next node
next = next->predecessor;
} while (next != nullptr);
path.push_back(new Node(finish));
// Use emplace_back to call Node copy constructor
path.emplace_back(finish);
// If we never found a valid path, erase all contents of the path
if (!isValid) path.erase(path.begin(), path.end());
@ -108,12 +111,11 @@ void Graph::DFS(const Node &startNode) const
for (const auto &node : nodes_) node.color = White;
int time = 0;
Node begin = startNode;
auto startIter = std::find(nodes_.begin(), nodes_.end(),
Node(startNode.number, {})
);
// Visit each node in the graph
// beginning at startNode, visit each node in the graph until we reach the end
while (startIter != nodes_.end()) {
std::cout << "Visiting node " << startIter->number << std::endl;
// If the startIter is undiscovered, visit it
@ -124,9 +126,12 @@ void Graph::DFS(const Node &startNode) const
}
startIter++;
}
// Once we reach the last node, check the beginning for unchecked nodes
startIter = nodes_.begin();
while (! (*startIter == startNode)) {
// Once we reach the initial startNode, we have checked all nodes
while (*startIter != startNode) {
std::cout << "Visiting node " << startIter->number << std::endl;
// If the startIter is undiscovered, visit it
if (startIter->color == White) {
@ -143,6 +148,7 @@ void Graph::DFSVisit(int &time, const Node& startNode) const
startNode.color = Gray;
time++;
startNode.discoveryFinish.first = time;
// Check the adjacent nodes of the startNode
for (const auto &adjacent : startNode.adjacent) {
auto iter = std::find(nodes_.begin(), nodes_.end(),

View File

@ -56,7 +56,7 @@ public:
mutable int distance = 0;
// Used in BFS to represent the parent node that discovered this node
// + If we use this node as the starting point, this will remain a nullptr
mutable Node *predecessor = nullptr;
mutable const Node *predecessor = nullptr;
// Create a pair to track discovery / finish time when using DFS
// + Discovery time is the iteration the node is first discovered
@ -67,9 +67,12 @@ public:
// Define a comparator for std::sort
// + This will help to sort nodes by finished time after traversal
static bool FinishedSort(const Node &node1, const Node &node2)
{ return node1.discoveryFinish.second < node2.discoveryFinish.second;}
// Define operator== for std::find
{ return node1.discoveryFinish.second < node2.discoveryFinish.second;}
// Define operator== for std::find; And comparisons between nodes
bool operator==(const Node &b) const { return this->number == b.number;}
// Define an operator!= for comparing nodes for inequality
bool operator!=(const Node &b) const { return this->number != b.number;}
};
@ -83,29 +86,32 @@ public:
// Breadth First Search
void BFS(const Node& startNode) const;
std::deque<const Node *> PathBFS(const Node &start, const Node &finish) const;
std::deque<Node> PathBFS(const Node &start, const Node &finish) const;
// Depth First Search
void DFS() const;
// An alternate DFS that checks each node of the graph beginning at startNode
void DFS(const Node &startNode) const;
// Visit function is used in both versions of DFS
void DFSVisit(int &time, const Node& startNode) const;
// Topological sort, using DFS
std::vector<Node> TopologicalSort(const Node &startNode) const;
// Returns a copy of a node with the number i within the graph
// + This uses the private, non-const accessor GetNode()
inline Node GetNodeCopy(int i) { return GetNode(i);}
// Return a constant iterator for reading node values
inline std::vector<Node>::const_iterator NodeBegin() { return nodes_.begin();}
inline std::vector<Node>::const_iterator NodeBegin() { return nodes_.cbegin();}
private:
// A non-const accessor for direct access to a node with the number value i
inline Node & GetNode(int i)
{ return *std::find(nodes_.begin(), nodes_.end(), Node(i, {}));}
{ return *std::find(nodes_.begin(), nodes_.end(), Node(i, {}));}
// For use with const member functions to access mutable values
inline const Node & GetNode(int i) const
{ return *std::find(nodes_.begin(), nodes_.end(), Node(i, {}));}
{ return *std::find(nodes_.begin(), nodes_.end(), Node(i, {}));}
std::vector<Node> nodes_;
};