Update object-graph example to add path finding between nodes using BFS
+ Clean code, add overloaded functions and helper functions for common tasks
This commit is contained in:
parent
348586ec38
commit
4a8b607ff6
|
@ -14,7 +14,7 @@
|
|||
int main (const int argc, const char * argv[])
|
||||
{
|
||||
// We could initialize the graph with some localNodes...
|
||||
std::map<int, std::vector<int>> localNodes{
|
||||
std::vector<Node> localNodes{
|
||||
{1, {2, 5}}, // Node 1
|
||||
{2, {1, 6}}, // Node 2
|
||||
{3, {4, 6, 7}},
|
||||
|
@ -24,34 +24,50 @@ int main (const int argc, const char * argv[])
|
|||
{7, {3, 4, 6, 8}},
|
||||
{8, {4, 6}},
|
||||
};
|
||||
// Graph bfsGraph(localNodes);
|
||||
Graph bfsGraphInit(localNodes);
|
||||
|
||||
|
||||
std::cout << "\n\n##### Breadth First Search #####\n";
|
||||
// Or we could use an initializer list...
|
||||
// Initialize a example graph for Breadth First Search
|
||||
Graph bfsGraph (
|
||||
Graph bfsGraph(
|
||||
{
|
||||
{Node(1, {2, 5})}, // Node 1
|
||||
{Node(2, {1, 6})}, // Node 2...
|
||||
{Node(3, {4, 6, 7})},
|
||||
{Node(4, {3, 7, 8})},
|
||||
{Node(5, {1})},
|
||||
{Node(6, {2, 3, 7})},
|
||||
{Node(7, {3, 4, 6, 8})},
|
||||
{Node(8, {4, 6})},
|
||||
{1, {2, 5}}, // Node 1
|
||||
{2, {1, 6}}, // Node 2...
|
||||
{3, {4, 6, 7}},
|
||||
{4, {3, 7, 8}},
|
||||
{5, {1}},
|
||||
{6, {2, 3, 7}},
|
||||
{7, {3, 4, 6, 8}},
|
||||
{8, {4, 6}},
|
||||
}
|
||||
);
|
||||
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||||
// + Chapter 22, Figure 22.3 on BFS
|
||||
auto iter = bfsGraph.nodes_.begin();
|
||||
std::advance(iter, 1);
|
||||
bfsGraph.BFS(*iter);
|
||||
bfsGraph.BFS(bfsGraph.GetNodeCopy(2));
|
||||
Node test = bfsGraph.GetNodeCopy(3);
|
||||
|
||||
std::cout << "\nTesting finding a path between two nodes using BFS...\n";
|
||||
// Test finding a path between two nodes using BFS
|
||||
auto path = bfsGraph.PathBFS(
|
||||
bfsGraph.GetNodeCopy(1), bfsGraph.GetNodeCopy(7)
|
||||
);
|
||||
// If we were returned an empty path, it doesn't exist
|
||||
if (path.empty()) std::cout << "No valid path found!\n";
|
||||
else {
|
||||
// If we were returned a path, print it
|
||||
std::cout << "\nValid path from " << path.front()->number
|
||||
<< " to " << path.back()->number << ": ";
|
||||
for (const auto &node : path) {
|
||||
std::cout << node->number << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
|
||||
std::cout << "\n\n##### Depth First Search #####\n";
|
||||
// Initialize an example graph for Depth First Search
|
||||
Graph dfsGraph (
|
||||
Graph dfsGraph(
|
||||
{
|
||||
{1, {2, 4}},
|
||||
{2, {5}},
|
||||
|
@ -68,7 +84,41 @@ int main (const int argc, const char * argv[])
|
|||
|
||||
std::cout << "\n\n##### Topological Sort #####\n";
|
||||
// Initialize an example graph for Depth First Search
|
||||
// + The order of initialization is important
|
||||
// + To produce the same result as seen in the book
|
||||
// ++ If the order is changed, other valid topological orders will be found
|
||||
// The book starts on the 'shirt' node (with the number 6, in this example)
|
||||
Graph topologicalGraph (
|
||||
{
|
||||
{1, {4, 5}}, // undershorts
|
||||
{2, {5}}, // socks
|
||||
{3, {}}, // watch
|
||||
{4, {5, 7}}, // pants
|
||||
{5, {}}, // shoes
|
||||
{6, {8, 7}}, // shirt
|
||||
{7, {9}}, // belt
|
||||
{8, {9}}, // tie
|
||||
{9, {}}, // jacket
|
||||
}
|
||||
);
|
||||
|
||||
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||||
// + Chapter 22, Figure 22.4 on DFS
|
||||
// Unlike the simple-graph example, this final result matches MIT Algorithms
|
||||
// + Aside from the placement of the watch node, which is not connected
|
||||
// + This is because the node is visited after all other nodes are finished
|
||||
std::vector<Node> order =
|
||||
topologicalGraph.TopologicalSort(topologicalGraph.GetNodeCopy(6));
|
||||
std::cout << "\n\nTopological order: ";
|
||||
while (!order.empty()) {
|
||||
std::cout << order.back().number << " ";
|
||||
order.pop_back();
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
// If we want the topological order to match what is seen in the book
|
||||
// + We have to initialize the graph carefully to get this result -
|
||||
Graph topologicalGraph2 (
|
||||
{
|
||||
{6, {8, 7}}, // shirt
|
||||
{8, {9}}, // tie
|
||||
|
@ -81,15 +131,11 @@ int main (const int argc, const char * argv[])
|
|||
{2, {5}}, // socks
|
||||
}
|
||||
);
|
||||
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||||
// + Chapter 22, Figure 22.4 on DFS
|
||||
// Unlike the simple-graph example, this final result matches MIT Algorithms
|
||||
std::vector<Node> order = topologicalGraph.TopologicalSort();
|
||||
auto order2 = topologicalGraph2.TopologicalSort(*topologicalGraph2.NodeBegin());
|
||||
std::cout << "\n\nTopological order: ";
|
||||
while (!order.empty()) {
|
||||
std::cout << order.back().number << " ";
|
||||
order.pop_back();
|
||||
while (!order2.empty()) {
|
||||
std::cout << order2.back().number << " ";
|
||||
order2.pop_back();
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
}
|
|
@ -14,13 +14,19 @@ void Graph::BFS(const Node& startNode) const
|
|||
{
|
||||
// Track the nodes we have discovered
|
||||
// TODO: Do this at the end to maintain the state instead of at beginning?
|
||||
for (const auto &node : nodes_) node.color = White;
|
||||
for (const auto &node : nodes_) {
|
||||
node.color = White;
|
||||
node.distance = 0;
|
||||
node.predecessor = nullptr;
|
||||
}
|
||||
|
||||
// Create a queue to visit discovered nodes in FIFO order
|
||||
std::queue<Node> visitQueue;
|
||||
|
||||
// Mark the startNode as in progress until we finish checking adjacent nodes
|
||||
startNode.color = Gray;
|
||||
// startNode.distance = 0;
|
||||
// startNode.predecessor = nullptr;
|
||||
|
||||
// Visit the startNode
|
||||
visitQueue.push(startNode);
|
||||
|
@ -34,18 +40,47 @@ void Graph::BFS(const Node& startNode) const
|
|||
|
||||
// Check if we have already discovered all the adjacentNodes to thisNode
|
||||
for (const auto &adjacent : thisNode.adjacent) {
|
||||
if (nodes_[adjacent - 1].color == White) {
|
||||
if (GetNode(adjacent).color == White) {
|
||||
std::cout << "Found undiscovered adjacentNode: " << adjacent << "\n";
|
||||
// Mark the adjacent node as in progress
|
||||
nodes_[adjacent - 1].color = Gray;
|
||||
GetNode(adjacent).color = Gray;
|
||||
GetNode(adjacent).distance = thisNode.distance + 1;
|
||||
GetNode(adjacent).predecessor =
|
||||
const_cast<Node *>(&GetNode(thisNode.number));
|
||||
|
||||
// Add the discovered node the the visitQueue
|
||||
visitQueue.push(nodes_[adjacent - 1]);
|
||||
visitQueue.push(GetNode(adjacent));
|
||||
}
|
||||
}
|
||||
// We are finished with this node and the adjacent nodes; Mark it discovered
|
||||
thisNode.color = Black;
|
||||
GetNode(thisNode.number).color = Black;
|
||||
}
|
||||
}
|
||||
|
||||
std::deque<const Node *> Graph::PathBFS(const Node &start, const Node &finish) const
|
||||
{
|
||||
std::deque<const Node *> path;
|
||||
|
||||
BFS(start);
|
||||
const Node * next = finish.predecessor;
|
||||
bool isValid = false;
|
||||
do {
|
||||
// If we have reached the start node, we have found a valid path
|
||||
if (*next == Node(start)) isValid = true;
|
||||
|
||||
// Add the node to the path as we check each node
|
||||
path.push_front(next);
|
||||
|
||||
// Move to the next node
|
||||
next = next->predecessor;
|
||||
} while (next != nullptr);
|
||||
path.push_back(new Node(finish));
|
||||
|
||||
// If we never found a valid path, erase all contents of the path
|
||||
if (!isValid) path.erase(path.begin(), path.end());
|
||||
|
||||
// Return the path, the caller should handle empty paths accordingly
|
||||
return path;
|
||||
}
|
||||
|
||||
void Graph::DFS() const
|
||||
|
@ -67,6 +102,42 @@ void Graph::DFS() const
|
|||
|
||||
}
|
||||
|
||||
void Graph::DFS(const Node &startNode) const
|
||||
{
|
||||
// Track the nodes we have discovered
|
||||
for (const auto &node : nodes_) node.color = White;
|
||||
int time = 0;
|
||||
|
||||
Node begin = startNode;
|
||||
auto startIter = std::find(nodes_.begin(), nodes_.end(),
|
||||
Node(startNode.number, {})
|
||||
);
|
||||
|
||||
// Visit each node in the graph
|
||||
while (startIter != nodes_.end()) {
|
||||
std::cout << "Visiting node " << startIter->number << std::endl;
|
||||
// If the startIter is undiscovered, visit it
|
||||
if (startIter->color == White) {
|
||||
std::cout << "Found undiscovered node: " << startIter->number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(time, *startIter);
|
||||
}
|
||||
startIter++;
|
||||
}
|
||||
startIter = nodes_.begin();
|
||||
|
||||
while (! (*startIter == startNode)) {
|
||||
std::cout << "Visiting node " << startIter->number << std::endl;
|
||||
// If the startIter is undiscovered, visit it
|
||||
if (startIter->color == White) {
|
||||
std::cout << "Found undiscovered node: " << startIter->number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(time, *startIter);
|
||||
}
|
||||
startIter++;
|
||||
}
|
||||
}
|
||||
|
||||
void Graph::DFSVisit(int &time, const Node& startNode) const
|
||||
{
|
||||
startNode.color = Gray;
|
||||
|
@ -80,7 +151,7 @@ void Graph::DFSVisit(int &time, const Node& startNode) const
|
|||
// + Offset by 1 to account for 0 index of discovered vector
|
||||
if (iter->color == White) {
|
||||
std::cout << "Found undiscovered adjacentNode: "
|
||||
<< nodes_[adjacent - 1].number << std::endl;
|
||||
<< GetNode(adjacent).number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(time, *iter);
|
||||
}
|
||||
|
@ -90,9 +161,9 @@ void Graph::DFSVisit(int &time, const Node& startNode) const
|
|||
startNode.discoveryFinish.second = time;
|
||||
}
|
||||
|
||||
std::vector<Node> Graph::TopologicalSort() const
|
||||
std::vector<Node> Graph::TopologicalSort(const Node &startNode) const
|
||||
{
|
||||
DFS();
|
||||
DFS(GetNode(startNode.number));
|
||||
std::vector<Node> topological(nodes_);
|
||||
|
||||
std::sort(topological.begin(), topological.end(), Node::FinishedSort);
|
||||
|
|
|
@ -18,16 +18,23 @@
|
|||
#include <queue>
|
||||
#include <unordered_set>
|
||||
|
||||
// Color represents the discovery status of any given node
|
||||
// + White is undiscovered, Gray is in progress, Black is fully discovered
|
||||
enum Color {White, Gray, Black};
|
||||
|
||||
/******************************************************************************/
|
||||
// Node structure for representing a graph
|
||||
struct Node {
|
||||
public:
|
||||
// Constructors
|
||||
Node(const Node &rhs) = default;
|
||||
Node & operator=(Node rhs) {
|
||||
if (this == &rhs) return *this;
|
||||
swap(*this, rhs);
|
||||
return *this;
|
||||
}
|
||||
Node(int num, std::vector<int> adj) : number(num), adjacent(std::move(adj)) {}
|
||||
|
||||
friend void swap(Node &a, Node &b) {
|
||||
std::swap(a.number, b.number);
|
||||
std::swap(a.adjacent, b.adjacent);
|
||||
|
@ -35,13 +42,23 @@ public:
|
|||
std::swap(a.discoveryFinish, b.discoveryFinish);
|
||||
}
|
||||
|
||||
Node(int num, std::vector<int> adj) :
|
||||
number(num), adjacent(std::move(adj)) {}
|
||||
// Don't allow anyone to change these values when using a const reference
|
||||
int number;
|
||||
std::vector<int> adjacent;
|
||||
// Mutable so we can update the color of the nodes during traversal
|
||||
|
||||
// Mutable members so we can update these values when using a const reference
|
||||
// + Since they need to be modified during traversals
|
||||
|
||||
// Coloring of the nodes are used in both DFS and BFS
|
||||
mutable Color color = White;
|
||||
// Create a pair to track discovery / finish time
|
||||
|
||||
// Used in BFS to represent distance from start node
|
||||
mutable int distance = 0;
|
||||
// Used in BFS to represent the parent node that discovered this node
|
||||
// + If we use this node as the starting point, this will remain a nullptr
|
||||
mutable Node *predecessor = nullptr;
|
||||
|
||||
// Create a pair to track discovery / finish time when using DFS
|
||||
// + Discovery time is the iteration the node is first discovered
|
||||
// + Finish time is the iteration the node has been checked completely
|
||||
// ++ A finished node has considered all adjacent nodes
|
||||
|
@ -51,21 +68,46 @@ public:
|
|||
// + This will help to sort nodes by finished time after traversal
|
||||
static bool FinishedSort(const Node &node1, const Node &node2)
|
||||
{ return node1.discoveryFinish.second < node2.discoveryFinish.second;}
|
||||
|
||||
|
||||
// Define operator== for std::find
|
||||
bool operator==(const Node &b) const { return this->number == b.number;}
|
||||
};
|
||||
|
||||
|
||||
/******************************************************************************/
|
||||
// Graph class declaration
|
||||
class Graph {
|
||||
public:
|
||||
// Constructor
|
||||
explicit Graph(std::vector<Node> nodes) : nodes_(std::move(nodes)) {}
|
||||
std::vector<Node> nodes_;
|
||||
|
||||
|
||||
// Breadth First Search
|
||||
void BFS(const Node& startNode) const;
|
||||
std::deque<const Node *> PathBFS(const Node &start, const Node &finish) const;
|
||||
|
||||
|
||||
// Depth First Search
|
||||
void DFS() const;
|
||||
void DFS(const Node &startNode) const;
|
||||
void DFSVisit(int &time, const Node& startNode) const;
|
||||
std::vector<Node> TopologicalSort() const;
|
||||
// Topological sort, using DFS
|
||||
std::vector<Node> TopologicalSort(const Node &startNode) const;
|
||||
|
||||
|
||||
// Returns a copy of a node with the number i within the graph
|
||||
inline Node GetNodeCopy(int i) { return GetNode(i);}
|
||||
// Return a constant iterator for reading node values
|
||||
inline std::vector<Node>::const_iterator NodeBegin() { return nodes_.begin();}
|
||||
|
||||
private:
|
||||
// A non-const accessor for direct access to a node with the number value i
|
||||
inline Node & GetNode(int i)
|
||||
{ return *std::find(nodes_.begin(), nodes_.end(), Node(i, {}));}
|
||||
// For use with const member functions to access mutable values
|
||||
inline const Node & GetNode(int i) const
|
||||
{ return *std::find(nodes_.begin(), nodes_.end(), Node(i, {}));}
|
||||
|
||||
std::vector<Node> nodes_;
|
||||
};
|
||||
|
||||
#endif // LIB_GRAPH_HPP
|
||||
|
|
Loading…
Reference in New Issue