Remove unused BST class template
This commit is contained in:
parent
f7c22e4228
commit
4fe1fc106b
|
@ -1,17 +0,0 @@
|
|||
###############################################################################
|
||||
## Author: Shaun Reed ##
|
||||
## Legal: All Content (c) 2020 Shaun Reed, all rights reserved ##
|
||||
## About: A basic CMakeLists configuration to test BST implementation ##
|
||||
## ##
|
||||
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
|
||||
##############################################################################
|
||||
## CMakeLists.txt
|
||||
#
|
||||
|
||||
cmake_minimum_required(VERSION 3.2)
|
||||
# Define the project name
|
||||
project(BinarySearchTree)
|
||||
# Define source files
|
||||
set(SRC driver.cpp bst.cpp)
|
||||
# Build an executable
|
||||
add_executable(BSTDriver ${SRC})
|
|
@ -1,342 +0,0 @@
|
|||
/*#############################################################################
|
||||
## Author: Shaun Reed ##
|
||||
## Legal: All Content (c) 2020 Shaun Reed, all rights reserved ##
|
||||
## About: An example of a binary search tree implementation ##
|
||||
## ##
|
||||
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
|
||||
##############################################################################
|
||||
## bst.cpp
|
||||
*/
|
||||
|
||||
#include "bst.h"
|
||||
|
||||
|
||||
/********************************************************************************
|
||||
* Constructors, Destructors, Operators
|
||||
*********************************************************************************/
|
||||
|
||||
/** Copy Assignment Operator
|
||||
* @brief Empty the calling object's root BinaryNode, and copy the rhs data
|
||||
*
|
||||
* @param rhs The BST to copy, beginning from its root BinaryNode
|
||||
* @return const BinarySearchTree& The copied BinarySearchTree object
|
||||
*/
|
||||
const BinarySearchTree& BinarySearchTree::operator=(const BinarySearchTree& rhs)
|
||||
{
|
||||
// If the objects are already equal, do nothing
|
||||
if (this == &rhs) return *this;
|
||||
|
||||
// Empty this->root
|
||||
makeEmpty();
|
||||
// Copy rhs to this->root
|
||||
root = clone(rhs.root);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Default Destructor
|
||||
* @brief Destroy the Binary Search Tree:: Binary Search Tree object
|
||||
*/
|
||||
BinarySearchTree::~BinarySearchTree()
|
||||
{
|
||||
makeEmpty(root);
|
||||
}
|
||||
|
||||
|
||||
/********************************************************************************
|
||||
* Public Member Functions
|
||||
*********************************************************************************/
|
||||
|
||||
/** findMin
|
||||
* @brief Find and return the minimum value of the calling BST object
|
||||
* Calls to the private member findMin(BinaryNode* t)
|
||||
*
|
||||
* @return const int& The element of the BinaryNode that holds the lowest value in our tree
|
||||
*/
|
||||
const int & BinarySearchTree::findMin() const
|
||||
{
|
||||
return findMin(root)->element;
|
||||
}
|
||||
|
||||
/** findMax
|
||||
* @brief Find and return the maximum value of the calling BST object
|
||||
* Calls to the private member findMax(BinaryNode* t)
|
||||
*
|
||||
* @return const int& The element of the BinaryNode that holds the highest value in our tree
|
||||
*/
|
||||
const int & BinarySearchTree::findMax() const
|
||||
{
|
||||
return findMax(root)->element;
|
||||
}
|
||||
|
||||
/** contains
|
||||
* @brief Determine whether or not a value exists within the calling BST object
|
||||
* Calls to the private member contains(const int &x, BinaryNode* t)
|
||||
*
|
||||
* @param x The value to search for within our tree
|
||||
* @return true If the value is found within any BinaryNode->element
|
||||
* @return false If the value is not found within any BinaryNode->element
|
||||
*/
|
||||
bool BinarySearchTree::contains(const int &x) const
|
||||
{
|
||||
return contains(x, root);
|
||||
}
|
||||
|
||||
/** isEmpty
|
||||
* @brief Determine whether or not the calling BST object is empty
|
||||
*
|
||||
* @return true If this->root node points to an empty tree (NULL)
|
||||
* @return false If this->root node points to a constructed BinaryNode
|
||||
*/
|
||||
bool BinarySearchTree::isEmpty() const
|
||||
{
|
||||
return root == NULL;
|
||||
}
|
||||
|
||||
/** insert
|
||||
* @brief Inserts a new value into the calling BST object
|
||||
* Calls to the private member insert(const int &x, BinaryNode* t)
|
||||
*
|
||||
* @param x The new value to insert into our BinarySearchTree
|
||||
*/
|
||||
void BinarySearchTree::insert(const int & x)
|
||||
{
|
||||
insert(x, root);
|
||||
}
|
||||
|
||||
/** remove
|
||||
* @brief Remove a value from the calling BST object
|
||||
* Calls to the private member remove(const int &x, BinaryNode* t)
|
||||
*
|
||||
* @param x The value to remove from our BST
|
||||
*/
|
||||
void BinarySearchTree::remove(const int &x)
|
||||
{
|
||||
remove(x, root);
|
||||
}
|
||||
|
||||
/** makeEmpty
|
||||
* @brief Delete the root BinaryNode and all of its children from the calling BST object
|
||||
* Calls to the private member makeEmpty(BinaryNode* t)
|
||||
*/
|
||||
void BinarySearchTree::makeEmpty()
|
||||
{
|
||||
makeEmpty(root);
|
||||
}
|
||||
|
||||
/** printInOrder
|
||||
* @brief Output the element of each BinaryNode between their left and right subtrees
|
||||
* Calls to the private member printInOrder(BinaryNode* t)
|
||||
*/
|
||||
void BinarySearchTree::printInOrder() const
|
||||
{
|
||||
printInOrder(root);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
/** printPostOrder
|
||||
* @brief Output the element of each BinaryNode after their left and right subtrees
|
||||
* Calls to the private member printPostOrder(BinaryNode* t)
|
||||
*/
|
||||
void BinarySearchTree::printPostOrder() const
|
||||
{
|
||||
printPostOrder(root);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
/** printPreOrder
|
||||
* @brief Output the element of each BinaryNode before their left and right subtrees
|
||||
* Calls to the private member printPreOrder(BinaryNode* t)
|
||||
*/
|
||||
void BinarySearchTree::printPreOrder() const
|
||||
{
|
||||
printPreOrder(root);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
|
||||
/********************************************************************************
|
||||
* Private Member Functions
|
||||
*********************************************************************************/
|
||||
|
||||
/** clone
|
||||
* @brief Clone a BST node and all its children
|
||||
*
|
||||
* @param t The node to begin cloning from
|
||||
* @return BinarySearchTree::BinaryNode* The root node of the copied tree
|
||||
*/
|
||||
BinarySearchTree::BinaryNode * BinarySearchTree::clone(BinaryNode *t) const
|
||||
{
|
||||
// If there is nothing to copy
|
||||
if (t == NULL) return NULL;
|
||||
|
||||
// Construct all child nodes through recursion, return root node
|
||||
return new BinaryNode(t->element, clone(t->left), clone(t->right));
|
||||
}
|
||||
|
||||
/** insert
|
||||
* @brief Insert a value into the BST of the given BinaryNode
|
||||
*
|
||||
* @param x The value to be inserted
|
||||
* @param t The BinaryNode to begin insertion
|
||||
*/
|
||||
void BinarySearchTree::insert(const int &x, BinarySearchTree::BinaryNode *&t) const
|
||||
{
|
||||
if (t == NULL)
|
||||
t = new BinaryNode(x, NULL, NULL);
|
||||
else if (x < t->element)
|
||||
insert (x, t->left);
|
||||
else if (x > t->element)
|
||||
insert (x, t->right);
|
||||
else
|
||||
return;
|
||||
}
|
||||
|
||||
/** remove
|
||||
* @brief Removes a value from the BST of the given BinaryNode
|
||||
*
|
||||
* @param x The value to be removed
|
||||
* @param t The BinaryNode to begin search and removal from
|
||||
*/
|
||||
void BinarySearchTree::remove(const int &x, BinarySearchTree::BinaryNode *&t) const
|
||||
{
|
||||
if (t == NULL)
|
||||
return;
|
||||
|
||||
if (x < t->element)
|
||||
remove(x, t->left);
|
||||
else if (x > t->element)
|
||||
remove(x, t->right);
|
||||
else if (t->left != NULL && t->right != NULL) {
|
||||
// If we found the node and there are two branches
|
||||
t->element = findMin(t->right)->element;
|
||||
std::cout << "Removing [" << t->element << "]...\n";
|
||||
remove(t->element, t->right);
|
||||
}
|
||||
else {
|
||||
// If we found the value and there is only one branch
|
||||
BinaryNode *oldNode = t;
|
||||
t = (t->left != NULL) ? t->left : t->right;
|
||||
std::cout << "Removing [" << oldNode->element << "]...\n";
|
||||
delete oldNode;
|
||||
}
|
||||
}
|
||||
|
||||
/** findMin
|
||||
* @brief Find the minimum value within the BST of the given BinaryNode
|
||||
*
|
||||
* @param t The root BinaryNode to begin checking values
|
||||
* @return BinarySearchTree::BinaryNode* The BinaryNode which contains the smallest value (returns NULL if BST is empty)
|
||||
*/
|
||||
BinarySearchTree::BinaryNode * BinarySearchTree::findMin(BinarySearchTree::BinaryNode *t) const
|
||||
{
|
||||
while (t != NULL)
|
||||
t = t->left;
|
||||
|
||||
// If our tree is empty
|
||||
if (t == NULL)
|
||||
return NULL;
|
||||
|
||||
// If current node has no smaller children, it is min
|
||||
if (t->left == NULL)
|
||||
return t;
|
||||
|
||||
// Move down the left side of our tree and check again
|
||||
return findMin(t->left);
|
||||
}
|
||||
|
||||
/** findMax
|
||||
* @brief Find the maximum value within the BST of the given BinaryNode
|
||||
*
|
||||
* @param t The root BinaryNode to begin checking values
|
||||
* @return BinarySearchTree::BinaryNode* The BinaryNode which contains the largest value (returns NULL if BST is empty)
|
||||
*/
|
||||
BinarySearchTree::BinaryNode * BinarySearchTree::findMax(BinarySearchTree::BinaryNode *t) const
|
||||
{
|
||||
// If our tree is empty
|
||||
if (t == NULL)
|
||||
return NULL;
|
||||
|
||||
// If current node has no larger children, it is max
|
||||
if (t->right == NULL)
|
||||
return t;
|
||||
|
||||
// Move down the right side of our tree and check again
|
||||
return findMax(t->right);
|
||||
}
|
||||
|
||||
/** contains
|
||||
* @brief Determines if the value exists within the given BinaryNode and its children
|
||||
*
|
||||
* @param x The value to search for within the BST
|
||||
* @param t The root BinaryNode to begin the search
|
||||
* @return true If the value is found within the root node or any of its children
|
||||
* @return false If the value is not found within the root node or any of its children
|
||||
*/
|
||||
bool BinarySearchTree::contains(const int &x, BinarySearchTree::BinaryNode *t) const
|
||||
{
|
||||
if (t == NULL) // If tree is empty
|
||||
return false;
|
||||
else if (x < t->element) // If x is smaller than our current value
|
||||
return contains(x, t->left);// Check left node
|
||||
else if (x > t->element) // If x is larger than our current value
|
||||
return contains(x, t->right); // Check right node
|
||||
else
|
||||
return true;
|
||||
}
|
||||
|
||||
/** makeEmpty
|
||||
* @brief Recursively delete the given root BinaryNode and all of its children
|
||||
*
|
||||
* @param t The root BinaryNode to delete, along with all child nodes
|
||||
*/
|
||||
void BinarySearchTree::makeEmpty(BinarySearchTree::BinaryNode * & t)
|
||||
{
|
||||
if (t != NULL) {
|
||||
makeEmpty(t->left);
|
||||
makeEmpty(t->right);
|
||||
delete t;
|
||||
}
|
||||
t = NULL;
|
||||
}
|
||||
|
||||
/** printInOrder
|
||||
* @brief Output the element of the root nodes between printing their left and right subtrees
|
||||
*
|
||||
* @param t The root BinaryNode to begin the 'In Order' output
|
||||
*/
|
||||
void BinarySearchTree::printInOrder(BinaryNode *t) const
|
||||
{
|
||||
if(t != NULL) {
|
||||
printInOrder(t->left);
|
||||
std::cout << t->element << " ";
|
||||
printInOrder(t->right);
|
||||
}
|
||||
}
|
||||
|
||||
/** printPostOrder
|
||||
* @brief Output the value of the root nodes only after their subtrees
|
||||
*
|
||||
* @param t The root BinaryNode to begin the 'Post Order' output
|
||||
*/
|
||||
void BinarySearchTree::printPostOrder(BinaryNode *t) const
|
||||
{
|
||||
if (t != NULL) {
|
||||
printPostOrder(t->left);
|
||||
printPostOrder(t->right);
|
||||
std::cout << t->element << " ";
|
||||
}
|
||||
}
|
||||
|
||||
/** printPreOrder
|
||||
* @brief Output the value of the noot nodes before their subtrees
|
||||
*
|
||||
* @param t The root BinaryNode to begin the 'Pre Order' output
|
||||
*/
|
||||
void BinarySearchTree::printPreOrder(BinaryNode *t) const
|
||||
{
|
||||
if (t != NULL) {
|
||||
std::cout << t->element << " ";
|
||||
printPreOrder(t->left);
|
||||
printPreOrder(t->right);
|
||||
}
|
||||
}
|
|
@ -1,56 +0,0 @@
|
|||
/*#############################################################################
|
||||
## Author: Shaun Reed ##
|
||||
## Legal: All Content (c) 2020 Shaun Reed, all rights reserved ##
|
||||
## About: An example of a binary search tree implementation ##
|
||||
## ##
|
||||
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
|
||||
##############################################################################
|
||||
## bst.h
|
||||
*/
|
||||
|
||||
#ifndef BST_H
|
||||
#define BST_H
|
||||
|
||||
#include <iostream>
|
||||
|
||||
// TODO: Add balance() method to balance overweight branches
|
||||
class BinarySearchTree {
|
||||
|
||||
public:
|
||||
BinarySearchTree() : root(NULL) {};
|
||||
BinarySearchTree(const BinarySearchTree &rhs) : root(rhs.clone(rhs.root)) {};
|
||||
const BinarySearchTree& operator=(const BinarySearchTree& rhs);
|
||||
~BinarySearchTree();
|
||||
const int & findMin() const;
|
||||
const int & findMax() const;
|
||||
bool contains(const int &x) const;
|
||||
bool isEmpty() const;
|
||||
void insert(const int &x);
|
||||
void remove(const int &x);
|
||||
void makeEmpty();
|
||||
void printInOrder() const;
|
||||
void printPostOrder() const;
|
||||
void printPreOrder() const;
|
||||
|
||||
private:
|
||||
struct BinaryNode{
|
||||
int element;
|
||||
BinaryNode *left;
|
||||
BinaryNode *right;
|
||||
BinaryNode(const int &el, BinaryNode *lt, BinaryNode *rt)
|
||||
:element(el), left(lt), right(rt) {};
|
||||
};
|
||||
BinaryNode *root;
|
||||
BinaryNode * clone(BinaryNode *t) const;
|
||||
void insert(const int &x, BinaryNode *&t) const;
|
||||
void remove(const int &x, BinaryNode *&t) const;
|
||||
BinaryNode * findMin(BinaryNode *t) const;
|
||||
BinaryNode * findMax(BinaryNode *t) const;
|
||||
bool contains(const int &x, BinaryNode *t) const;
|
||||
void makeEmpty(BinaryNode * & t);
|
||||
void printInOrder(BinaryNode *t) const;
|
||||
void printPostOrder(BinaryNode *t) const;
|
||||
void printPreOrder(BinaryNode *t) const;
|
||||
};
|
||||
|
||||
#endif //BST_H
|
|
@ -1,91 +0,0 @@
|
|||
/*#############################################################################
|
||||
## Author: Shaun Reed ##
|
||||
## Legal: All Content (c) 2020 Shaun Reed, all rights reserved ##
|
||||
## About: A driver program to test a binary search tree implementation ##
|
||||
## ##
|
||||
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
|
||||
##############################################################################
|
||||
## driver.cpp
|
||||
*/
|
||||
|
||||
#include "bst.h"
|
||||
#include <iostream>
|
||||
|
||||
enum OPS {
|
||||
EXIT, INSERT, REMOVE, CONTAINS, INFIX, PREFIX, POSTFIX, EMPTY, MIN, MAX
|
||||
};
|
||||
|
||||
int main()
|
||||
{
|
||||
std::cout << "Driver: \n";
|
||||
BinarySearchTree testList;
|
||||
bool exit = false;
|
||||
int choice = -1;
|
||||
int val;
|
||||
|
||||
while (!exit)
|
||||
{
|
||||
std::cout << "##### Binary Search Tree Menu #####\n\t0. Exit"
|
||||
"\n\t1. Insert\n\t2. Remove\n\t3. Contains\n\t4. Infix\n\t5. Prefix"
|
||||
<< "\n\t6. Postfix\n\t7. Empty\n\t8. Min\n\t9. Max\n";
|
||||
std::cin >> choice;
|
||||
std::cin.clear();
|
||||
switch (choice) {
|
||||
case EXIT:
|
||||
exit = true;
|
||||
break;
|
||||
|
||||
case INSERT:
|
||||
std::cout << "Enter a value to insert to our tree: ";
|
||||
std::cin >> val;
|
||||
std::cin.clear();
|
||||
testList.insert(val);
|
||||
break;
|
||||
|
||||
case REMOVE:
|
||||
std::cout << "Enter a value to remove from our tree: ";
|
||||
std::cin >> val;
|
||||
std::cin.clear();
|
||||
testList.remove(val);
|
||||
break;
|
||||
|
||||
case CONTAINS:
|
||||
std::cout << "Enter a value to search for within our tree: ";
|
||||
std::cin >> val;
|
||||
std::cin.clear();
|
||||
if (testList.contains(val))
|
||||
std::cout << val << " exists within our tree\n";
|
||||
else std::cout << val << " does not exist within our tree\n";
|
||||
break;
|
||||
|
||||
case INFIX:
|
||||
testList.printInOrder();
|
||||
break;
|
||||
|
||||
case PREFIX:
|
||||
testList.printPreOrder();
|
||||
break;
|
||||
|
||||
case POSTFIX:
|
||||
testList.printPostOrder();
|
||||
break;
|
||||
|
||||
case EMPTY:
|
||||
testList.makeEmpty();
|
||||
break;
|
||||
|
||||
case MIN:
|
||||
std::cout << "Min value within our tree: " << testList.findMin();
|
||||
break;
|
||||
|
||||
case MAX:
|
||||
std::cout << "Max value within our tree: " << testList.findMax();
|
||||
break;
|
||||
|
||||
default:
|
||||
std::cout << "Invalid entry...\n";
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue