Add JavaScript WebGL example
+ Update READMEs
This commit is contained in:
@@ -32,20 +32,6 @@ optional arguments:
|
||||
Optionally provide file for data to be read from. Each point must be on it's own line with format x,y
|
||||
```
|
||||
|
||||
Running linear regression program
|
||||
```bash
|
||||
python3.9 linear-regression.py --file ./input.txt --silent
|
||||
Finding fitting line plot for given data [(1, 3), (2, 7), (3, 5), (4, 9), (5, 11), (6, 12), (7, 15)]
|
||||
points_avg: (5.117647058823529, 5.235294117647059)
|
||||
variance: (241.76470588235296, 193.05882352941177)
|
||||
sigma: (3.887196176892422, 3.4736402333270258)
|
||||
covariance: 0.8455882352941174
|
||||
correlation: 0.0626235432924427
|
||||
Our line Y = BX + A must pass through the point (5.117647058823529, 5.235294117647059)
|
||||
Y = (0.05596107055961069)X + 4.9489051094890515
|
||||
For X = 4.5, Y is predicted to be 5.200729927007299
|
||||
```
|
||||
|
||||
By default, the following linear regression is calculated and displayed
|
||||
```bash
|
||||
python3.9 linear-regression.py
|
||||
|
||||
@@ -90,7 +90,7 @@ Final paths sorted by probability:
|
||||
(0, 2, 1, 0, 2) has probability: 0.001395
|
||||
```
|
||||
|
||||
By default, a random Hidden Markov Model and visualization will be generated
|
||||
By default, a random Hidden Markov Model and visualization will be generated and the sequence `[A, B, D, C]` will be used.
|
||||
|
||||
```bash
|
||||
python3.9 markov-model.py
|
||||
|
||||
@@ -8,10 +8,10 @@ python3.9 -m pip install -r requirements.txt
|
||||
Neural network implementation using Python CLI to dynamically generate a resizable network
|
||||
and then run a given number of learning cycles on the provided data set.
|
||||
As an example, the IRIS dataset is used to classify flower types using petal measurements.
|
||||
Input layer perceptron count can be adjusted with `INPUTS` positional parameter
|
||||
Hidden layer perceptron count can be adjusted with `PERCEPTRONS` positional parameter
|
||||
Output layer perceptron count can be adjusted with `OUTPUTS` positional parameter
|
||||
Hidden layers can be added or removed using`--hidden-layers` option setting
|
||||
Input layer perceptron count can be adjusted with `INPUTS` positional parameter.
|
||||
Hidden layer perceptron count can be adjusted with `PERCEPTRONS` positional parameter.
|
||||
Output layer perceptron count can be adjusted with `OUTPUTS` positional parameter.
|
||||
Hidden layers can be added or removed using`--hidden-layers` option setting.
|
||||
Node bias can be initialized randomly or with provided data.
|
||||
Perceptron edge weight bias can be initialized randomly or with provided data.
|
||||
Threshold for perceptron fire can be initialized randomly or with provided data.
|
||||
@@ -96,7 +96,7 @@ If the length of an input sequence does not match the number of input nodes requ
|
||||
If the length of possible label classifications does not match the number of output nodes requested, a warning will show.
|
||||
In both cases, the program corrects the node count to match the input data / labels, and not the requested node count.
|
||||
|
||||
The total number of output labels provided must match the total number of the number of input sequences.
|
||||
The total number of output labels provided must match the total number of input sequences.
|
||||
|
||||
Running NN program uses IRIS data set by default.
|
||||
Warnings will be shown if input and output node count is changed without providing new input.
|
||||
|
||||
Reference in New Issue
Block a user