parent
940d035638
commit
573fc4e1e8
|
@ -8,6 +8,8 @@ github.com/shaunrd0/klips/
|
||||||
├── blockchain # Blockchain related project templates and examples
|
├── blockchain # Blockchain related project templates and examples
|
||||||
├── cpp # C++ programs, datastructures, and other examples
|
├── cpp # C++ programs, datastructures, and other examples
|
||||||
├── figlet # Figlet fonts I like :)
|
├── figlet # Figlet fonts I like :)
|
||||||
|
├── javascript # Javascript projects and examples
|
||||||
|
├── python # Python scripts or tools I've made
|
||||||
├── README.md
|
├── README.md
|
||||||
└── scripts # Bash scripts
|
└── scripts # Bash scripts
|
||||||
```
|
```
|
||||||
|
|
|
@ -0,0 +1,9 @@
|
||||||
|
# Javascript
|
||||||
|
|
||||||
|
This directory contains Javascript projects and examples that I've made.
|
||||||
|
|
||||||
|
```
|
||||||
|
github.com/shaunrd0/klips/javascript
|
||||||
|
├── webgl # Examples of using WebGL within JS
|
||||||
|
└── README.md
|
||||||
|
```
|
|
@ -0,0 +1,165 @@
|
||||||
|
<!DOCTYPE html>
|
||||||
|
<html lang="en">
|
||||||
|
<head>
|
||||||
|
<meta charset="UTF-8">
|
||||||
|
<title>01_simple-shape</title>
|
||||||
|
|
||||||
|
<style>
|
||||||
|
.test {
|
||||||
|
background-color: gray;
|
||||||
|
}
|
||||||
|
canvas {
|
||||||
|
background-color: gray;
|
||||||
|
width: 100%;
|
||||||
|
height: 100%;
|
||||||
|
display: block;
|
||||||
|
}
|
||||||
|
</style>
|
||||||
|
|
||||||
|
</head>
|
||||||
|
<body>
|
||||||
|
|
||||||
|
<!-- Simple example of shader source code (WebGL Fundamentals) -->
|
||||||
|
<script id="vertex-simple-shader" type="x-shader/x-vertex">
|
||||||
|
attribute vec2 a_position;
|
||||||
|
uniform vec2 u_resolution;
|
||||||
|
|
||||||
|
void main() {
|
||||||
|
// Convert pixel coordinates to a float randing from 0.0 -> 1.0
|
||||||
|
vec2 zeroToOne = a_position / u_resolution;
|
||||||
|
// Convert from 0->1 to 0->2
|
||||||
|
vec2 zeroToTwo = zeroToOne * 2.0;
|
||||||
|
// Convert from 0->2 to -1.0->1.0
|
||||||
|
vec2 clipSpace = zeroToTwo - 1.0;
|
||||||
|
|
||||||
|
gl_Position = vec4(clipSpace * vec2(1, -1), 0, 1);
|
||||||
|
}
|
||||||
|
</script>
|
||||||
|
<script id="fragment-simple-shader" type="x-shader/x-vertex">
|
||||||
|
precision mediump float;
|
||||||
|
uniform vec4 u_color;
|
||||||
|
|
||||||
|
void main() {
|
||||||
|
gl_FragColor = u_color;
|
||||||
|
}
|
||||||
|
</script>
|
||||||
|
|
||||||
|
<!-- HTML document -->
|
||||||
|
<p class="test">This is test HTML with some CSS. Logging with JS...<br>The following block is an OpenGL canvas</p>
|
||||||
|
<canvas id="canvas"></canvas>
|
||||||
|
|
||||||
|
<!-- WebGL -->
|
||||||
|
<script>
|
||||||
|
function main() {
|
||||||
|
//
|
||||||
|
// Boilerplate OpenGL helper functions
|
||||||
|
function createShader(gl, type, source) {
|
||||||
|
let shader = gl.createShader(type);
|
||||||
|
gl.shaderSource(shader, source);
|
||||||
|
gl.compileShader(shader);
|
||||||
|
let success = gl.getShaderParameter(shader, gl.COMPILE_STATUS);
|
||||||
|
if (success) {
|
||||||
|
return shader;
|
||||||
|
}
|
||||||
|
|
||||||
|
console.log(gl.getShaderInfoLog(shader));
|
||||||
|
gl.deleteShader(shader);
|
||||||
|
}
|
||||||
|
|
||||||
|
function createProgram(gl, vertexShader, fragmentShader) {
|
||||||
|
// Add check to automatically compile shaders if Strings are provided
|
||||||
|
// + Strings should be equal to HTML script id attribute value for vertex and fragment shaders
|
||||||
|
if (typeof vertexShader == 'string') {
|
||||||
|
let vertexShaderSource = document.querySelector(vertexShader).text;
|
||||||
|
vertexShader = createShader(gl, gl.VERTEX_SHADER, vertexShaderSource);
|
||||||
|
}
|
||||||
|
if (typeof fragmentShader == 'string') {
|
||||||
|
let fragmentShaderSource = document.querySelector(fragmentShader).text;
|
||||||
|
fragmentShader = createShader(gl, gl.FRAGMENT_SHADER, fragmentShaderSource);
|
||||||
|
}
|
||||||
|
|
||||||
|
let program = gl.createProgram();
|
||||||
|
gl.attachShader(program, vertexShader);
|
||||||
|
gl.attachShader(program, fragmentShader);
|
||||||
|
gl.linkProgram(program);
|
||||||
|
let success = gl.getProgramParameter(program, gl.LINK_STATUS);
|
||||||
|
if (success) {
|
||||||
|
return program;
|
||||||
|
}
|
||||||
|
|
||||||
|
console.log(gl.getProgramInfoLog(program));
|
||||||
|
gl.deleteProgram(program);
|
||||||
|
}
|
||||||
|
|
||||||
|
let canvas = document.querySelector("#canvas");
|
||||||
|
let gl = canvas.getContext('webgl');
|
||||||
|
if (!gl) {
|
||||||
|
console.log("ERROR: Unable to get OpenGL context");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
console.log("Created OpenGL context on HTML canvas")
|
||||||
|
}
|
||||||
|
|
||||||
|
// Creating shader program and compiling shader source code
|
||||||
|
let program = createProgram(gl, "#vertex-simple-shader", "#fragment-simple-shader");
|
||||||
|
|
||||||
|
// look up where the vertex data needs to go.
|
||||||
|
let positionAttributeLocation = gl.getAttribLocation(program, "a_position");
|
||||||
|
// look up uniform locations
|
||||||
|
let resolutionUniformLocation = gl.getUniformLocation(program, "u_resolution");
|
||||||
|
let colorUniformLocation = gl.getUniformLocation(program, "u_color");
|
||||||
|
|
||||||
|
// Create a buffer to put three 2d clip space points in
|
||||||
|
let positionBuffer = gl.createBuffer();
|
||||||
|
// Bind it to ARRAY_BUFFER (think of it as ARRAY_BUFFER = positionBuffer)
|
||||||
|
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
|
||||||
|
|
||||||
|
// Canvas setup
|
||||||
|
// Resize canvas to match client size
|
||||||
|
const width = canvas.clientWidth;
|
||||||
|
const height = canvas.clientHeight;
|
||||||
|
canvas.width = width;
|
||||||
|
canvas.height = height;
|
||||||
|
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
|
||||||
|
// Clear the canvas
|
||||||
|
gl.clearColor(0, 0, 0, 0);
|
||||||
|
gl.clear(gl.COLOR_BUFFER_BIT);
|
||||||
|
|
||||||
|
// Tell OpenGL to use our shader program
|
||||||
|
gl.useProgram(program);
|
||||||
|
// Enable attribute; Bind gl.ARRAY_BUFFER for use with this attribute
|
||||||
|
gl.enableVertexAttribArray(positionAttributeLocation);
|
||||||
|
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
|
||||||
|
|
||||||
|
// Tell the attribute how to get data out of positionBuffer (ARRAY_BUFFER)
|
||||||
|
let size = 2; // 2 components per iteration (X and Y value for each vertex position)
|
||||||
|
let type = gl.FLOAT; // Each X and Y value is a 32bit float
|
||||||
|
let normalize = false; // don't normalize the data
|
||||||
|
let stride = 0; // 0 = move forward size * sizeof(type) each iteration to get the next position
|
||||||
|
let offset = 0; // start at the beginning of the buffer
|
||||||
|
gl.vertexAttribPointer(positionAttributeLocation, size, type, normalize, stride, offset);
|
||||||
|
|
||||||
|
// Initialize geometry data for a 2D triangle with 3 vertices
|
||||||
|
let triangle = new Float32Array([
|
||||||
|
350, 100,
|
||||||
|
500, 300,
|
||||||
|
200, 300,
|
||||||
|
]);
|
||||||
|
|
||||||
|
// Write geometry data to positions array buffer
|
||||||
|
gl.bufferData(gl.ARRAY_BUFFER, triangle, gl.STATIC_DRAW);
|
||||||
|
// Set a random color
|
||||||
|
gl.uniform4f(colorUniformLocation, Math.random(), Math.random(), Math.random(), 1);
|
||||||
|
// set the resolution
|
||||||
|
gl.uniform2f(resolutionUniformLocation, gl.canvas.width, gl.canvas.height);
|
||||||
|
|
||||||
|
// Draw the triangle with 0 offset and 3 total vertices
|
||||||
|
gl.drawArrays(gl.TRIANGLES, 0, 3);
|
||||||
|
|
||||||
|
}
|
||||||
|
main();
|
||||||
|
</script>
|
||||||
|
|
||||||
|
</body>
|
||||||
|
</html>
|
|
@ -0,0 +1,9 @@
|
||||||
|
# Javascript
|
||||||
|
|
||||||
|
This directory contains examples of using WebGL within JavaScript.
|
||||||
|
|
||||||
|
```
|
||||||
|
github.com/shaunrd0/klips/javascript/webgl
|
||||||
|
├── 01_simple-shape # Drawing a simple solid color triangle with WebGL
|
||||||
|
└── README.md
|
||||||
|
```
|
|
@ -32,20 +32,6 @@ optional arguments:
|
||||||
Optionally provide file for data to be read from. Each point must be on it's own line with format x,y
|
Optionally provide file for data to be read from. Each point must be on it's own line with format x,y
|
||||||
```
|
```
|
||||||
|
|
||||||
Running linear regression program
|
|
||||||
```bash
|
|
||||||
python3.9 linear-regression.py --file ./input.txt --silent
|
|
||||||
Finding fitting line plot for given data [(1, 3), (2, 7), (3, 5), (4, 9), (5, 11), (6, 12), (7, 15)]
|
|
||||||
points_avg: (5.117647058823529, 5.235294117647059)
|
|
||||||
variance: (241.76470588235296, 193.05882352941177)
|
|
||||||
sigma: (3.887196176892422, 3.4736402333270258)
|
|
||||||
covariance: 0.8455882352941174
|
|
||||||
correlation: 0.0626235432924427
|
|
||||||
Our line Y = BX + A must pass through the point (5.117647058823529, 5.235294117647059)
|
|
||||||
Y = (0.05596107055961069)X + 4.9489051094890515
|
|
||||||
For X = 4.5, Y is predicted to be 5.200729927007299
|
|
||||||
```
|
|
||||||
|
|
||||||
By default, the following linear regression is calculated and displayed
|
By default, the following linear regression is calculated and displayed
|
||||||
```bash
|
```bash
|
||||||
python3.9 linear-regression.py
|
python3.9 linear-regression.py
|
||||||
|
|
|
@ -90,7 +90,7 @@ Final paths sorted by probability:
|
||||||
(0, 2, 1, 0, 2) has probability: 0.001395
|
(0, 2, 1, 0, 2) has probability: 0.001395
|
||||||
```
|
```
|
||||||
|
|
||||||
By default, a random Hidden Markov Model and visualization will be generated
|
By default, a random Hidden Markov Model and visualization will be generated and the sequence `[A, B, D, C]` will be used.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
python3.9 markov-model.py
|
python3.9 markov-model.py
|
||||||
|
|
|
@ -8,10 +8,10 @@ python3.9 -m pip install -r requirements.txt
|
||||||
Neural network implementation using Python CLI to dynamically generate a resizable network
|
Neural network implementation using Python CLI to dynamically generate a resizable network
|
||||||
and then run a given number of learning cycles on the provided data set.
|
and then run a given number of learning cycles on the provided data set.
|
||||||
As an example, the IRIS dataset is used to classify flower types using petal measurements.
|
As an example, the IRIS dataset is used to classify flower types using petal measurements.
|
||||||
Input layer perceptron count can be adjusted with `INPUTS` positional parameter
|
Input layer perceptron count can be adjusted with `INPUTS` positional parameter.
|
||||||
Hidden layer perceptron count can be adjusted with `PERCEPTRONS` positional parameter
|
Hidden layer perceptron count can be adjusted with `PERCEPTRONS` positional parameter.
|
||||||
Output layer perceptron count can be adjusted with `OUTPUTS` positional parameter
|
Output layer perceptron count can be adjusted with `OUTPUTS` positional parameter.
|
||||||
Hidden layers can be added or removed using`--hidden-layers` option setting
|
Hidden layers can be added or removed using`--hidden-layers` option setting.
|
||||||
Node bias can be initialized randomly or with provided data.
|
Node bias can be initialized randomly or with provided data.
|
||||||
Perceptron edge weight bias can be initialized randomly or with provided data.
|
Perceptron edge weight bias can be initialized randomly or with provided data.
|
||||||
Threshold for perceptron fire can be initialized randomly or with provided data.
|
Threshold for perceptron fire can be initialized randomly or with provided data.
|
||||||
|
@ -96,7 +96,7 @@ If the length of an input sequence does not match the number of input nodes requ
|
||||||
If the length of possible label classifications does not match the number of output nodes requested, a warning will show.
|
If the length of possible label classifications does not match the number of output nodes requested, a warning will show.
|
||||||
In both cases, the program corrects the node count to match the input data / labels, and not the requested node count.
|
In both cases, the program corrects the node count to match the input data / labels, and not the requested node count.
|
||||||
|
|
||||||
The total number of output labels provided must match the total number of the number of input sequences.
|
The total number of output labels provided must match the total number of input sequences.
|
||||||
|
|
||||||
Running NN program uses IRIS data set by default.
|
Running NN program uses IRIS data set by default.
|
||||||
Warnings will be shown if input and output node count is changed without providing new input.
|
Warnings will be shown if input and output node count is changed without providing new input.
|
||||||
|
|
Loading…
Reference in New Issue