Add example of object graph traversal algorithms
+ Using pseudocode examples from MIT Intro to Algorithms
This commit is contained in:
parent
21ed349c39
commit
5d37db1ce2
|
@ -0,0 +1,22 @@
|
|||
################################################################################
|
||||
## Author: Shaun Reed ##
|
||||
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
|
||||
## About: A basic CMakeLists configuration to test RBT implementation ##
|
||||
## ##
|
||||
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
|
||||
################################################################################
|
||||
#
|
||||
|
||||
cmake_minimum_required(VERSION 3.15)
|
||||
|
||||
project(
|
||||
#[[NAME]] ObjectGraph
|
||||
VERSION 1.0
|
||||
DESCRIPTION "Practice implementing and using object graphs in C++"
|
||||
LANGUAGES CXX
|
||||
)
|
||||
|
||||
add_library(lib-graph-object "lib-graph.cpp")
|
||||
|
||||
add_executable(graph-test-object "graph.cpp")
|
||||
target_link_libraries(graph-test-object lib-graph-object)
|
|
@ -0,0 +1,101 @@
|
|||
/*##############################################################################
|
||||
## Author: Shaun Reed ##
|
||||
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
|
||||
## About: An example of an object graph implementation ##
|
||||
## Algorithms in this example are found in MIT Intro to Algorithms ##
|
||||
## ##
|
||||
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
|
||||
################################################################################
|
||||
*/
|
||||
|
||||
#include "lib-graph.hpp"
|
||||
|
||||
|
||||
int main (const int argc, const char * argv[])
|
||||
{
|
||||
// We could initialize the graph with some localNodes...
|
||||
std::map<int, std::set<int>> localNodes{
|
||||
{1, {2, 5}}, // Node 1
|
||||
{2, {1, 6}}, // Node 2
|
||||
{3, {4, 6, 7}},
|
||||
{4, {3, 7, 8}},
|
||||
{5, {1}},
|
||||
{6, {2, 3, 7}},
|
||||
{7, {3, 4, 6, 8}},
|
||||
{8, {4, 6}},
|
||||
};
|
||||
// Graph bfsGraph(localNodes);
|
||||
|
||||
// Graph testGraph(
|
||||
// {
|
||||
// {Node(1, {2, 5})},
|
||||
//// {Node(1, {2, 5})},
|
||||
// }
|
||||
// )
|
||||
|
||||
|
||||
std::cout << "\n\n##### Breadth First Search #####\n";
|
||||
// Or we could use an initializer list...
|
||||
// Initialize a example graph for Breadth First Search
|
||||
Graph bfsGraph (
|
||||
{
|
||||
{Node(1, {2, 5})}, // Node 1
|
||||
{Node(2, {1, 6})}, // Node 2...
|
||||
{Node(3, {4, 6, 7})},
|
||||
{Node(4, {3, 7, 8})},
|
||||
{Node(5, {1})},
|
||||
{Node(6, {2, 3, 7})},
|
||||
{Node(7, {3, 4, 6, 8})},
|
||||
{Node(8, {4, 6})},
|
||||
}
|
||||
);
|
||||
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||||
// + Chapter 22, Figure 22.3 on BFS
|
||||
auto iter = bfsGraph.nodes_.begin();
|
||||
std::advance(iter, 1);
|
||||
bfsGraph.BFS(*iter);
|
||||
|
||||
|
||||
std::cout << "\n\n##### Depth First Search #####\n";
|
||||
// Initialize an example graph for Depth First Search
|
||||
Graph dfsGraph (
|
||||
{
|
||||
{1, {2, 4}},
|
||||
{2, {5}},
|
||||
{3, {5, 6}},
|
||||
{4, {2}},
|
||||
{5, {4}},
|
||||
{6, {6}},
|
||||
}
|
||||
);
|
||||
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||||
// + Chapter 22, Figure 22.4 on DFS
|
||||
dfsGraph.DFS();
|
||||
|
||||
|
||||
std::cout << "\n\n##### Topological Sort #####\n";
|
||||
// Initialize an example graph for Depth First Search
|
||||
Graph topologicalGraph (
|
||||
{
|
||||
{1, {4, 5}},
|
||||
{2, {5}},
|
||||
{3, {}},
|
||||
{4, {5, 7}},
|
||||
{5, {}},
|
||||
{6, {7, 8}},
|
||||
{7, {9}},
|
||||
{8, {9}},
|
||||
{9, {}},
|
||||
}
|
||||
);
|
||||
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||||
// + Chapter 22, Figure 22.4 on DFS
|
||||
std::vector<Node> order = topologicalGraph.TopologicalSort();
|
||||
std::cout << "\n\nTopological order: ";
|
||||
while (!order.empty()) {
|
||||
std::cout << order.back().number << " ";
|
||||
order.pop_back();
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
}
|
|
@ -0,0 +1,128 @@
|
|||
/*##############################################################################
|
||||
## Author: Shaun Reed ##
|
||||
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
|
||||
## About: Driver program to test object graph implementation ##
|
||||
## ##
|
||||
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
|
||||
################################################################################
|
||||
*/
|
||||
|
||||
#include "lib-graph.hpp"
|
||||
|
||||
|
||||
void Graph::BFS(const Node& startNode) const
|
||||
{
|
||||
// Track the nodes we have discovered
|
||||
// TODO: Do this at the end to maintain the state instead of at beginning?
|
||||
for (const auto &node : nodes_) node.color = White;
|
||||
|
||||
// Create a queue to visit discovered nodes in FIFO order
|
||||
std::queue<Node> visitQueue;
|
||||
|
||||
// Mark the startNode as in progress until we finish checking adjacent nodes
|
||||
startNode.color = Gray;
|
||||
|
||||
// Visit the startNode
|
||||
visitQueue.push(startNode);
|
||||
|
||||
// Continue to visit nodes until there are none left in the graph
|
||||
while (!visitQueue.empty()) {
|
||||
// Remove thisNode from the visitQueue, storing its vertex locally
|
||||
Node thisNode = visitQueue.front();
|
||||
visitQueue.pop();
|
||||
std::cout << "Visiting node " << thisNode.number << std::endl;
|
||||
|
||||
// Check if we have already discovered all the adjacentNodes to thisNode
|
||||
for (const auto &adjacent : thisNode.adjacent) {
|
||||
if (nodes_[adjacent - 1].color == White) {
|
||||
std::cout << "Found undiscovered adjacentNode: " << adjacent << "\n";
|
||||
// Mark the adjacent node as in progress
|
||||
nodes_[adjacent - 1].color = Gray;
|
||||
// Add the discovered node the the visitQueue
|
||||
visitQueue.push(nodes_[adjacent - 1]);
|
||||
}
|
||||
}
|
||||
// We are finished with this node and the adjacent nodes; Mark it discovered
|
||||
thisNode.color = Black;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Graph::DFS() const
|
||||
{
|
||||
// Track the nodes we have discovered
|
||||
for (const auto &node : nodes_) node.color = White;
|
||||
|
||||
// Visit each node in the graph
|
||||
for (const auto& node : nodes_) {
|
||||
std::cout << "Visiting node " << node.number << std::endl;
|
||||
// If the node is undiscovered, visit it
|
||||
if (node.color == White) {
|
||||
std::cout << "Found undiscovered node: " << node.number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(node);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Graph::DFSVisit(const Node& startNode) const
|
||||
{
|
||||
startNode.color = Gray;
|
||||
// Check the adjacent nodes of the startNode
|
||||
for (const auto &adjacent : startNode.adjacent) {
|
||||
// If the adjacentNode is undiscovered, visit it
|
||||
// + Offset by 1 to account for 0 index of discovered vector
|
||||
if (nodes_[adjacent - 1].color == White) {
|
||||
std::cout << "Found undiscovered adjacentNode: "
|
||||
<< nodes_[adjacent - 1].number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(nodes_[adjacent - 1]);
|
||||
}
|
||||
}
|
||||
startNode.color = Black;
|
||||
}
|
||||
|
||||
std::vector<Node> Graph::TopologicalSort() const
|
||||
{
|
||||
std::vector<Node> topologicalOrder;
|
||||
|
||||
// Track the nodes we have discovered
|
||||
for (const auto &node : nodes_) node.color = White;
|
||||
|
||||
// Visit each node in the graph
|
||||
for (const auto &node : nodes_) {
|
||||
std::cout << "Visiting node " << node.number << std::endl;
|
||||
// If the node is undiscovered, visit it
|
||||
if (node.color == White) {
|
||||
std::cout << "Found undiscovered node: " << node.number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
TopologicalVisit(node, topologicalOrder);
|
||||
}
|
||||
}
|
||||
|
||||
// The topologicalOrder is read right-to-left in the final result
|
||||
// + Output is handled in main as FILO, similar to a stack
|
||||
return topologicalOrder;
|
||||
}
|
||||
|
||||
void Graph::TopologicalVisit(const Node &startNode,
|
||||
std::vector<Node> &order) const
|
||||
{
|
||||
// Mark the node as visited so we don't visit it twice
|
||||
startNode.color = Gray;
|
||||
|
||||
// Check the adjacent nodes of the startNode
|
||||
for (const auto& adjacent : startNode.adjacent) {
|
||||
// If the adjacentNode is undiscovered, visit it
|
||||
if (nodes_[adjacent - 1].color == White) {
|
||||
std::cout << "Found undiscovered adjacentNode: " << adjacent << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
TopologicalVisit(nodes_[adjacent - 1], order);
|
||||
}
|
||||
}
|
||||
startNode.color = Black;
|
||||
|
||||
// Add startNode to the topologicalOrder
|
||||
order.push_back(startNode);
|
||||
}
|
|
@ -0,0 +1,58 @@
|
|||
/*##############################################################################
|
||||
## Author: Shaun Reed ##
|
||||
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
|
||||
## About: An example of an object graph implementation ##
|
||||
## Algorithms in this example are found in MIT Intro to Algorithms ##
|
||||
## ##
|
||||
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
|
||||
################################################################################
|
||||
*/
|
||||
#ifndef LIB_GRAPH_HPP
|
||||
#define LIB_GRAPH_HPP
|
||||
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <queue>
|
||||
|
||||
// A vertex can also be referred to as a node
|
||||
// + ... Unless you are a mathematician ^.^
|
||||
struct Vertex {
|
||||
// This vertex's number
|
||||
int number;
|
||||
// A set of all vertices adjacent to this vertex
|
||||
std::set<int> adjacent;
|
||||
};
|
||||
|
||||
enum Color {White, Gray, Black};
|
||||
|
||||
struct Node {
|
||||
public:
|
||||
Node(int num, std::set<int> adj) : number(num), adjacent(std::move(adj)) {}
|
||||
int number;
|
||||
std::set<int> adjacent;
|
||||
// Mutable so we can update the color of the nodes during traversal
|
||||
mutable Color color = White;
|
||||
std::vector<int> predecessors;
|
||||
|
||||
// bool operator<(const Node &node1) const { return number < node1.number;}
|
||||
inline void setColor(Color newColor) const { color = newColor;}
|
||||
};
|
||||
|
||||
class Graph {
|
||||
public:
|
||||
explicit Graph(std::vector<Node> nodes) : nodes_(std::move(nodes)) {}
|
||||
std::vector<Node> nodes_;
|
||||
|
||||
void BFS(const Node& startNode) const;
|
||||
void DFS() const;
|
||||
void DFSVisit(const Node& startNode) const;
|
||||
std::vector<Node> TopologicalSort() const;
|
||||
void TopologicalVisit(const Node &startNode, std::vector<Node> &order) const;
|
||||
|
||||
};
|
||||
|
||||
#endif // LIB_GRAPH_HPP
|
Loading…
Reference in New Issue