Add example of object graph traversal algorithms

+ Using pseudocode examples from MIT Intro to Algorithms
This commit is contained in:
Shaun Reed 2021-06-28 10:12:19 -04:00
parent 21ed349c39
commit 5d37db1ce2
4 changed files with 309 additions and 0 deletions

View File

@ -0,0 +1,22 @@
################################################################################
## Author: Shaun Reed ##
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
## About: A basic CMakeLists configuration to test RBT implementation ##
## ##
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
################################################################################
#
cmake_minimum_required(VERSION 3.15)
project(
#[[NAME]] ObjectGraph
VERSION 1.0
DESCRIPTION "Practice implementing and using object graphs in C++"
LANGUAGES CXX
)
add_library(lib-graph-object "lib-graph.cpp")
add_executable(graph-test-object "graph.cpp")
target_link_libraries(graph-test-object lib-graph-object)

View File

@ -0,0 +1,101 @@
/*##############################################################################
## Author: Shaun Reed ##
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
## About: An example of an object graph implementation ##
## Algorithms in this example are found in MIT Intro to Algorithms ##
## ##
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
################################################################################
*/
#include "lib-graph.hpp"
int main (const int argc, const char * argv[])
{
// We could initialize the graph with some localNodes...
std::map<int, std::set<int>> localNodes{
{1, {2, 5}}, // Node 1
{2, {1, 6}}, // Node 2
{3, {4, 6, 7}},
{4, {3, 7, 8}},
{5, {1}},
{6, {2, 3, 7}},
{7, {3, 4, 6, 8}},
{8, {4, 6}},
};
// Graph bfsGraph(localNodes);
// Graph testGraph(
// {
// {Node(1, {2, 5})},
//// {Node(1, {2, 5})},
// }
// )
std::cout << "\n\n##### Breadth First Search #####\n";
// Or we could use an initializer list...
// Initialize a example graph for Breadth First Search
Graph bfsGraph (
{
{Node(1, {2, 5})}, // Node 1
{Node(2, {1, 6})}, // Node 2...
{Node(3, {4, 6, 7})},
{Node(4, {3, 7, 8})},
{Node(5, {1})},
{Node(6, {2, 3, 7})},
{Node(7, {3, 4, 6, 8})},
{Node(8, {4, 6})},
}
);
// The graph traversed in this example is seen in MIT Intro to Algorithms
// + Chapter 22, Figure 22.3 on BFS
auto iter = bfsGraph.nodes_.begin();
std::advance(iter, 1);
bfsGraph.BFS(*iter);
std::cout << "\n\n##### Depth First Search #####\n";
// Initialize an example graph for Depth First Search
Graph dfsGraph (
{
{1, {2, 4}},
{2, {5}},
{3, {5, 6}},
{4, {2}},
{5, {4}},
{6, {6}},
}
);
// The graph traversed in this example is seen in MIT Intro to Algorithms
// + Chapter 22, Figure 22.4 on DFS
dfsGraph.DFS();
std::cout << "\n\n##### Topological Sort #####\n";
// Initialize an example graph for Depth First Search
Graph topologicalGraph (
{
{1, {4, 5}},
{2, {5}},
{3, {}},
{4, {5, 7}},
{5, {}},
{6, {7, 8}},
{7, {9}},
{8, {9}},
{9, {}},
}
);
// The graph traversed in this example is seen in MIT Intro to Algorithms
// + Chapter 22, Figure 22.4 on DFS
std::vector<Node> order = topologicalGraph.TopologicalSort();
std::cout << "\n\nTopological order: ";
while (!order.empty()) {
std::cout << order.back().number << " ";
order.pop_back();
}
std::cout << std::endl;
}

View File

@ -0,0 +1,128 @@
/*##############################################################################
## Author: Shaun Reed ##
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
## About: Driver program to test object graph implementation ##
## ##
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
################################################################################
*/
#include "lib-graph.hpp"
void Graph::BFS(const Node& startNode) const
{
// Track the nodes we have discovered
// TODO: Do this at the end to maintain the state instead of at beginning?
for (const auto &node : nodes_) node.color = White;
// Create a queue to visit discovered nodes in FIFO order
std::queue<Node> visitQueue;
// Mark the startNode as in progress until we finish checking adjacent nodes
startNode.color = Gray;
// Visit the startNode
visitQueue.push(startNode);
// Continue to visit nodes until there are none left in the graph
while (!visitQueue.empty()) {
// Remove thisNode from the visitQueue, storing its vertex locally
Node thisNode = visitQueue.front();
visitQueue.pop();
std::cout << "Visiting node " << thisNode.number << std::endl;
// Check if we have already discovered all the adjacentNodes to thisNode
for (const auto &adjacent : thisNode.adjacent) {
if (nodes_[adjacent - 1].color == White) {
std::cout << "Found undiscovered adjacentNode: " << adjacent << "\n";
// Mark the adjacent node as in progress
nodes_[adjacent - 1].color = Gray;
// Add the discovered node the the visitQueue
visitQueue.push(nodes_[adjacent - 1]);
}
}
// We are finished with this node and the adjacent nodes; Mark it discovered
thisNode.color = Black;
}
}
void Graph::DFS() const
{
// Track the nodes we have discovered
for (const auto &node : nodes_) node.color = White;
// Visit each node in the graph
for (const auto& node : nodes_) {
std::cout << "Visiting node " << node.number << std::endl;
// If the node is undiscovered, visit it
if (node.color == White) {
std::cout << "Found undiscovered node: " << node.number << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
DFSVisit(node);
}
}
}
void Graph::DFSVisit(const Node& startNode) const
{
startNode.color = Gray;
// Check the adjacent nodes of the startNode
for (const auto &adjacent : startNode.adjacent) {
// If the adjacentNode is undiscovered, visit it
// + Offset by 1 to account for 0 index of discovered vector
if (nodes_[adjacent - 1].color == White) {
std::cout << "Found undiscovered adjacentNode: "
<< nodes_[adjacent - 1].number << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
DFSVisit(nodes_[adjacent - 1]);
}
}
startNode.color = Black;
}
std::vector<Node> Graph::TopologicalSort() const
{
std::vector<Node> topologicalOrder;
// Track the nodes we have discovered
for (const auto &node : nodes_) node.color = White;
// Visit each node in the graph
for (const auto &node : nodes_) {
std::cout << "Visiting node " << node.number << std::endl;
// If the node is undiscovered, visit it
if (node.color == White) {
std::cout << "Found undiscovered node: " << node.number << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
TopologicalVisit(node, topologicalOrder);
}
}
// The topologicalOrder is read right-to-left in the final result
// + Output is handled in main as FILO, similar to a stack
return topologicalOrder;
}
void Graph::TopologicalVisit(const Node &startNode,
std::vector<Node> &order) const
{
// Mark the node as visited so we don't visit it twice
startNode.color = Gray;
// Check the adjacent nodes of the startNode
for (const auto& adjacent : startNode.adjacent) {
// If the adjacentNode is undiscovered, visit it
if (nodes_[adjacent - 1].color == White) {
std::cout << "Found undiscovered adjacentNode: " << adjacent << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
TopologicalVisit(nodes_[adjacent - 1], order);
}
}
startNode.color = Black;
// Add startNode to the topologicalOrder
order.push_back(startNode);
}

View File

@ -0,0 +1,58 @@
/*##############################################################################
## Author: Shaun Reed ##
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
## About: An example of an object graph implementation ##
## Algorithms in this example are found in MIT Intro to Algorithms ##
## ##
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
################################################################################
*/
#ifndef LIB_GRAPH_HPP
#define LIB_GRAPH_HPP
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <utility>
#include <vector>
#include <queue>
// A vertex can also be referred to as a node
// + ... Unless you are a mathematician ^.^
struct Vertex {
// This vertex's number
int number;
// A set of all vertices adjacent to this vertex
std::set<int> adjacent;
};
enum Color {White, Gray, Black};
struct Node {
public:
Node(int num, std::set<int> adj) : number(num), adjacent(std::move(adj)) {}
int number;
std::set<int> adjacent;
// Mutable so we can update the color of the nodes during traversal
mutable Color color = White;
std::vector<int> predecessors;
// bool operator<(const Node &node1) const { return number < node1.number;}
inline void setColor(Color newColor) const { color = newColor;}
};
class Graph {
public:
explicit Graph(std::vector<Node> nodes) : nodes_(std::move(nodes)) {}
std::vector<Node> nodes_;
void BFS(const Node& startNode) const;
void DFS() const;
void DFSVisit(const Node& startNode) const;
std::vector<Node> TopologicalSort() const;
void TopologicalVisit(const Node &startNode, std::vector<Node> &order) const;
};
#endif // LIB_GRAPH_HPP