Add structs to track traversal information in object-graph example

+ Allows Graph member functions to remain const
+ Easy to pass traversal information around as needed
+ Update DFS and BFS functions to return traversal information
This commit is contained in:
Shaun Reed 2021-07-12 16:52:49 -04:00
parent 2a36de7c52
commit 64df3419a0
3 changed files with 87 additions and 76 deletions

View File

@ -45,7 +45,6 @@ int main (const int argc, const char * argv[])
// The graph traversed in this example is seen in MIT Intro to Algorithms
// + Chapter 22, Figure 22.3 on BFS
bfsGraph.BFS(bfsGraph.GetNodeCopy(2));
Node test = bfsGraph.GetNodeCopy(3);
std::cout << "\nTesting finding a path between two nodes using BFS...\n";
// Test finding a path between two nodes using BFS

View File

@ -10,23 +10,16 @@
#include "lib-graph.hpp"
void Graph::BFS(const Node& startNode) const
InfoBFS Graph::BFS(const Node& startNode) const
{
// Track the nodes we have discovered by their Color
for (const auto &node : nodes_) {
node.color = White;
// Track distance from the startNode
node.distance = 0;
// Track predecessor using node that discovers this node
// + If this is the startNode, predecessor remains nullptr
node.predecessor = nullptr;
}
// Create local object to track the information gathered during traversal
InfoBFS searchInfo;
// Create a queue to visit discovered nodes in FIFO order
std::queue<const Node *> visitQueue;
// Mark the startNode as in progress until we finish checking adjacent nodes
startNode.color = Gray;
searchInfo[startNode.number].discovered = Gray;
// Visit the startNode
visitQueue.push(&startNode);
@ -40,20 +33,23 @@ void Graph::BFS(const Node& startNode) const
// Check if we have already discovered all the adjacentNodes to thisNode
for (const auto &adjacent : thisNode->adjacent) {
if (GetNode(adjacent).color == White) {
if (searchInfo[adjacent].discovered == White) {
std::cout << "Found undiscovered adjacentNode: " << adjacent << "\n";
// Mark the adjacent node as in progress
GetNode(adjacent).color = Gray;
GetNode(adjacent).distance = thisNode->distance + 1;
GetNode(adjacent).predecessor = &GetNode(thisNode->number);
searchInfo[adjacent].discovered = Gray;
searchInfo[adjacent].distance = searchInfo[thisNode->number].distance + 1;
searchInfo[adjacent].predecessor = &GetNode(thisNode->number);
// Add the discovered node the the visitQueue
visitQueue.push(&GetNode(adjacent));
}
}
// We are finished with this node and the adjacent nodes; Mark it discovered
GetNode(thisNode->number).color = Black;
searchInfo[thisNode->number].discovered = Black;
}
// Return the information gathered from this search, JIC caller needs it
return searchInfo;
}
std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
@ -62,8 +58,8 @@ std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
// + If the caller modifies these, it will not impact the graph's data
std::deque<Node> path;
BFS(start);
const Node * next = finish.predecessor;
InfoBFS searchInfo = BFS(start);
const Node * next = searchInfo[finish.number].predecessor;
bool isValid = false;
do {
// If we have reached the start node, we have found a valid path
@ -74,7 +70,7 @@ std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
path.emplace_front(*next);
// Move to the next node
next = next->predecessor;
next = searchInfo[next->number].predecessor;
} while (next != nullptr);
// Use emplace_back to call Node copy constructor
path.emplace_back(finish);
@ -86,29 +82,30 @@ std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
return path;
}
void Graph::DFS() const
InfoDFS Graph::DFS() const
{
// Track the nodes we have discovered
for (const auto &node : nodes_) node.color = White;
InfoDFS searchInfo;
int time = 0;
// Visit each node in the graph
for (const auto& node : nodes_) {
std::cout << "Visiting node " << node.number << std::endl;
// If the node is undiscovered, visit it
if (node.color == White) {
if (searchInfo[node.number].discovered == White) {
std::cout << "Found undiscovered node: " << node.number << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
DFSVisit(time, node);
DFSVisit(time, node, searchInfo);
}
}
return searchInfo;
}
void Graph::DFS(const Node &startNode) const
InfoDFS Graph::DFS(const Node &startNode) const
{
// Track the nodes we have discovered
for (const auto &node : nodes_) node.color = White;
InfoDFS searchInfo;
int time = 0;
auto startIter = std::find(nodes_.begin(), nodes_.end(),
@ -119,10 +116,10 @@ void Graph::DFS(const Node &startNode) const
while (startIter != nodes_.end()) {
std::cout << "Visiting node " << startIter->number << std::endl;
// If the startIter is undiscovered, visit it
if (startIter->color == White) {
if (searchInfo[startIter->number].discovered == White) {
std::cout << "Found undiscovered node: " << startIter->number << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
DFSVisit(time, *startIter);
DFSVisit(time, *startIter, searchInfo);
}
startIter++;
}
@ -134,20 +131,22 @@ void Graph::DFS(const Node &startNode) const
while (*startIter != startNode) {
std::cout << "Visiting node " << startIter->number << std::endl;
// If the startIter is undiscovered, visit it
if (startIter->color == White) {
if (searchInfo[startIter->number].discovered == White) {
std::cout << "Found undiscovered node: " << startIter->number << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
DFSVisit(time, *startIter);
DFSVisit(time, *startIter, searchInfo);
}
startIter++;
}
return searchInfo;
}
void Graph::DFSVisit(int &time, const Node& startNode) const
void Graph::DFSVisit(int &time, const Node& startNode, InfoDFS &searchInfo) const
{
startNode.color = Gray;
searchInfo[startNode.number].discovered = Gray;
time++;
startNode.discoveryFinish.first = time;
searchInfo[startNode.number].discoveryFinish.first = time;
// Check the adjacent nodes of the startNode
for (const auto &adjacent : startNode.adjacent) {
@ -155,26 +154,33 @@ void Graph::DFSVisit(int &time, const Node& startNode) const
Node(adjacent, {}));
// If the adjacentNode is undiscovered, visit it
// + Offset by 1 to account for 0 index of discovered vector
if (iter->color == White) {
if (searchInfo[iter->number].discovered == White) {
std::cout << "Found undiscovered adjacentNode: "
<< GetNode(adjacent).number << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
DFSVisit(time, *iter);
DFSVisit(time, *iter, searchInfo);
}
}
startNode.color = Black;
searchInfo[startNode.number].discovered = Black;
time++;
startNode.discoveryFinish.second = time;
searchInfo[startNode.number].discoveryFinish.second = time;
}
std::vector<Node> Graph::TopologicalSort(const Node &startNode) const
{
DFS(GetNode(startNode.number));
std::vector<Node> topological(nodes_);
InfoDFS topological = DFS(GetNode(startNode.number));
std::sort(topological.begin(), topological.end(), Node::FinishedSort);
std::vector<Node> order(nodes_);
auto comp = [&topological](const Node &a, const Node &b) {
return (topological[a.number].discoveryFinish.second <
topological[b.number].discoveryFinish.second);
};
std::sort(order.begin(), order.end(), comp);
// The topologicalOrder is read right-to-left in the final result
// + Output is handled in main as FILO, similar to a stack
return topological;
return order;
}

View File

@ -17,11 +17,46 @@
#include <vector>
#include <queue>
#include <unordered_set>
#include <unordered_map>
/******************************************************************************/
// Structures for tracking information gathered from various traversals
struct Node;
// Color represents the discovery status of any given node
// + White is undiscovered, Gray is in progress, Black is fully discovered
enum Color {White, Gray, Black};
// Information used in all searches
struct SearchInfo {
// Coloring of the nodes is used in both DFS and BFS
Color discovered = White;
};
// Information that is only used in BFS
struct BFS : SearchInfo {
// Used to represent distance from start node
int distance = 0;
// Used to represent the parent node that discovered this node
// + If we use this node as the starting point, this will remain a nullptr
const Node *predecessor = nullptr;
};
// Information that is only used in DFS
struct DFS : SearchInfo {
// Create a pair to track discovery / finish time
// + Discovery time is the iteration the node is first discovered
// + Finish time is the iteration the node has been checked completely
// ++ A finished node has considered all adjacent nodes
std::pair<int, int> discoveryFinish;
};
// Store search information in unordered_maps so we can pass it around easily
// + Allows each node to store relative information on the traversal
using InfoBFS = std::unordered_map<int, struct BFS>;
using InfoDFS = std::unordered_map<int, struct DFS>;
/******************************************************************************/
// Node structure for representing a graph
struct Node {
@ -38,37 +73,11 @@ public:
friend void swap(Node &a, Node &b) {
std::swap(a.number, b.number);
std::swap(a.adjacent, b.adjacent);
std::swap(a.color, b.color);
std::swap(a.discoveryFinish, b.discoveryFinish);
}
// Don't allow anyone to change these values when using a const reference
int number;
std::vector<int> adjacent;
// Mutable members so we can update these values when using a const reference
// + Since they need to be modified during traversals
// Coloring of the nodes are used in both DFS and BFS
mutable Color color = White;
// Used in BFS to represent distance from start node
mutable int distance = 0;
// Used in BFS to represent the parent node that discovered this node
// + If we use this node as the starting point, this will remain a nullptr
mutable const Node *predecessor = nullptr;
// Create a pair to track discovery / finish time when using DFS
// + Discovery time is the iteration the node is first discovered
// + Finish time is the iteration the node has been checked completely
// ++ A finished node has considered all adjacent nodes
mutable std::pair<int, int> discoveryFinish;
// Define a comparator for std::sort
// + This will help to sort nodes by finished time after traversal
static bool FinishedSort(const Node &node1, const Node &node2)
{ return node1.discoveryFinish.second < node2.discoveryFinish.second;}
// Define operator== for std::find; And comparisons between nodes
bool operator==(const Node &b) const { return this->number == b.number;}
// Define an operator!= for comparing nodes for inequality
@ -83,24 +92,21 @@ public:
// Constructor
explicit Graph(std::vector<Node> nodes) : nodes_(std::move(nodes)) {}
// Breadth First Search
void BFS(const Node& startNode) const;
InfoBFS BFS(const Node& startNode) const;
std::deque<Node> PathBFS(const Node &start, const Node &finish) const;
// Depth First Search
void DFS() const;
InfoDFS DFS() const;
// An alternate DFS that checks each node of the graph beginning at startNode
void DFS(const Node &startNode) const;
InfoDFS DFS(const Node &startNode) const;
// Visit function is used in both versions of DFS
void DFSVisit(int &time, const Node& startNode) const;
void DFSVisit(int &time, const Node& startNode, InfoDFS &searchInfo) const;
// Topological sort, using DFS
std::vector<Node> TopologicalSort(const Node &startNode) const;
// Returns a copy of a node with the number i within the graph
// + This uses the private, non-const accessor GetNode()
// + This uses the private, non-const accessor GetNode() and returns a copy
inline Node GetNodeCopy(int i) { return GetNode(i);}
// Return a constant iterator for reading node values
inline std::vector<Node>::const_iterator NodeBegin() { return nodes_.cbegin();}
@ -109,7 +115,7 @@ private:
// A non-const accessor for direct access to a node with the number value i
inline Node & GetNode(int i)
{ return *std::find(nodes_.begin(), nodes_.end(), Node(i, {}));}
// For use with const member functions to access mutable values
// For grabbing a const qualified node
inline const Node & GetNode(int i) const
{ return *std::find(nodes_.begin(), nodes_.end(), Node(i, {}));}