Add structs to track traversal information in object-graph example
+ Allows Graph member functions to remain const + Easy to pass traversal information around as needed + Update DFS and BFS functions to return traversal information
This commit is contained in:
parent
2a36de7c52
commit
64df3419a0
|
@ -45,7 +45,6 @@ int main (const int argc, const char * argv[])
|
|||
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||||
// + Chapter 22, Figure 22.3 on BFS
|
||||
bfsGraph.BFS(bfsGraph.GetNodeCopy(2));
|
||||
Node test = bfsGraph.GetNodeCopy(3);
|
||||
|
||||
std::cout << "\nTesting finding a path between two nodes using BFS...\n";
|
||||
// Test finding a path between two nodes using BFS
|
||||
|
|
|
@ -10,23 +10,16 @@
|
|||
#include "lib-graph.hpp"
|
||||
|
||||
|
||||
void Graph::BFS(const Node& startNode) const
|
||||
InfoBFS Graph::BFS(const Node& startNode) const
|
||||
{
|
||||
// Track the nodes we have discovered by their Color
|
||||
for (const auto &node : nodes_) {
|
||||
node.color = White;
|
||||
// Track distance from the startNode
|
||||
node.distance = 0;
|
||||
// Track predecessor using node that discovers this node
|
||||
// + If this is the startNode, predecessor remains nullptr
|
||||
node.predecessor = nullptr;
|
||||
}
|
||||
// Create local object to track the information gathered during traversal
|
||||
InfoBFS searchInfo;
|
||||
|
||||
// Create a queue to visit discovered nodes in FIFO order
|
||||
std::queue<const Node *> visitQueue;
|
||||
|
||||
// Mark the startNode as in progress until we finish checking adjacent nodes
|
||||
startNode.color = Gray;
|
||||
searchInfo[startNode.number].discovered = Gray;
|
||||
|
||||
// Visit the startNode
|
||||
visitQueue.push(&startNode);
|
||||
|
@ -40,20 +33,23 @@ void Graph::BFS(const Node& startNode) const
|
|||
|
||||
// Check if we have already discovered all the adjacentNodes to thisNode
|
||||
for (const auto &adjacent : thisNode->adjacent) {
|
||||
if (GetNode(adjacent).color == White) {
|
||||
if (searchInfo[adjacent].discovered == White) {
|
||||
std::cout << "Found undiscovered adjacentNode: " << adjacent << "\n";
|
||||
// Mark the adjacent node as in progress
|
||||
GetNode(adjacent).color = Gray;
|
||||
GetNode(adjacent).distance = thisNode->distance + 1;
|
||||
GetNode(adjacent).predecessor = &GetNode(thisNode->number);
|
||||
searchInfo[adjacent].discovered = Gray;
|
||||
searchInfo[adjacent].distance = searchInfo[thisNode->number].distance + 1;
|
||||
searchInfo[adjacent].predecessor = &GetNode(thisNode->number);
|
||||
|
||||
// Add the discovered node the the visitQueue
|
||||
visitQueue.push(&GetNode(adjacent));
|
||||
}
|
||||
}
|
||||
// We are finished with this node and the adjacent nodes; Mark it discovered
|
||||
GetNode(thisNode->number).color = Black;
|
||||
searchInfo[thisNode->number].discovered = Black;
|
||||
}
|
||||
|
||||
// Return the information gathered from this search, JIC caller needs it
|
||||
return searchInfo;
|
||||
}
|
||||
|
||||
std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
|
||||
|
@ -62,8 +58,8 @@ std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
|
|||
// + If the caller modifies these, it will not impact the graph's data
|
||||
std::deque<Node> path;
|
||||
|
||||
BFS(start);
|
||||
const Node * next = finish.predecessor;
|
||||
InfoBFS searchInfo = BFS(start);
|
||||
const Node * next = searchInfo[finish.number].predecessor;
|
||||
bool isValid = false;
|
||||
do {
|
||||
// If we have reached the start node, we have found a valid path
|
||||
|
@ -74,7 +70,7 @@ std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
|
|||
path.emplace_front(*next);
|
||||
|
||||
// Move to the next node
|
||||
next = next->predecessor;
|
||||
next = searchInfo[next->number].predecessor;
|
||||
} while (next != nullptr);
|
||||
// Use emplace_back to call Node copy constructor
|
||||
path.emplace_back(finish);
|
||||
|
@ -86,29 +82,30 @@ std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
|
|||
return path;
|
||||
}
|
||||
|
||||
void Graph::DFS() const
|
||||
InfoDFS Graph::DFS() const
|
||||
{
|
||||
// Track the nodes we have discovered
|
||||
for (const auto &node : nodes_) node.color = White;
|
||||
InfoDFS searchInfo;
|
||||
int time = 0;
|
||||
|
||||
// Visit each node in the graph
|
||||
for (const auto& node : nodes_) {
|
||||
std::cout << "Visiting node " << node.number << std::endl;
|
||||
// If the node is undiscovered, visit it
|
||||
if (node.color == White) {
|
||||
if (searchInfo[node.number].discovered == White) {
|
||||
std::cout << "Found undiscovered node: " << node.number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(time, node);
|
||||
DFSVisit(time, node, searchInfo);
|
||||
}
|
||||
}
|
||||
|
||||
return searchInfo;
|
||||
}
|
||||
|
||||
void Graph::DFS(const Node &startNode) const
|
||||
InfoDFS Graph::DFS(const Node &startNode) const
|
||||
{
|
||||
// Track the nodes we have discovered
|
||||
for (const auto &node : nodes_) node.color = White;
|
||||
InfoDFS searchInfo;
|
||||
int time = 0;
|
||||
|
||||
auto startIter = std::find(nodes_.begin(), nodes_.end(),
|
||||
|
@ -119,10 +116,10 @@ void Graph::DFS(const Node &startNode) const
|
|||
while (startIter != nodes_.end()) {
|
||||
std::cout << "Visiting node " << startIter->number << std::endl;
|
||||
// If the startIter is undiscovered, visit it
|
||||
if (startIter->color == White) {
|
||||
if (searchInfo[startIter->number].discovered == White) {
|
||||
std::cout << "Found undiscovered node: " << startIter->number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(time, *startIter);
|
||||
DFSVisit(time, *startIter, searchInfo);
|
||||
}
|
||||
startIter++;
|
||||
}
|
||||
|
@ -134,20 +131,22 @@ void Graph::DFS(const Node &startNode) const
|
|||
while (*startIter != startNode) {
|
||||
std::cout << "Visiting node " << startIter->number << std::endl;
|
||||
// If the startIter is undiscovered, visit it
|
||||
if (startIter->color == White) {
|
||||
if (searchInfo[startIter->number].discovered == White) {
|
||||
std::cout << "Found undiscovered node: " << startIter->number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(time, *startIter);
|
||||
DFSVisit(time, *startIter, searchInfo);
|
||||
}
|
||||
startIter++;
|
||||
}
|
||||
|
||||
return searchInfo;
|
||||
}
|
||||
|
||||
void Graph::DFSVisit(int &time, const Node& startNode) const
|
||||
void Graph::DFSVisit(int &time, const Node& startNode, InfoDFS &searchInfo) const
|
||||
{
|
||||
startNode.color = Gray;
|
||||
searchInfo[startNode.number].discovered = Gray;
|
||||
time++;
|
||||
startNode.discoveryFinish.first = time;
|
||||
searchInfo[startNode.number].discoveryFinish.first = time;
|
||||
|
||||
// Check the adjacent nodes of the startNode
|
||||
for (const auto &adjacent : startNode.adjacent) {
|
||||
|
@ -155,26 +154,33 @@ void Graph::DFSVisit(int &time, const Node& startNode) const
|
|||
Node(adjacent, {}));
|
||||
// If the adjacentNode is undiscovered, visit it
|
||||
// + Offset by 1 to account for 0 index of discovered vector
|
||||
if (iter->color == White) {
|
||||
if (searchInfo[iter->number].discovered == White) {
|
||||
std::cout << "Found undiscovered adjacentNode: "
|
||||
<< GetNode(adjacent).number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(time, *iter);
|
||||
DFSVisit(time, *iter, searchInfo);
|
||||
}
|
||||
}
|
||||
startNode.color = Black;
|
||||
searchInfo[startNode.number].discovered = Black;
|
||||
time++;
|
||||
startNode.discoveryFinish.second = time;
|
||||
searchInfo[startNode.number].discoveryFinish.second = time;
|
||||
}
|
||||
|
||||
std::vector<Node> Graph::TopologicalSort(const Node &startNode) const
|
||||
{
|
||||
DFS(GetNode(startNode.number));
|
||||
std::vector<Node> topological(nodes_);
|
||||
InfoDFS topological = DFS(GetNode(startNode.number));
|
||||
|
||||
std::sort(topological.begin(), topological.end(), Node::FinishedSort);
|
||||
std::vector<Node> order(nodes_);
|
||||
|
||||
auto comp = [&topological](const Node &a, const Node &b) {
|
||||
return (topological[a.number].discoveryFinish.second <
|
||||
topological[b.number].discoveryFinish.second);
|
||||
};
|
||||
|
||||
std::sort(order.begin(), order.end(), comp);
|
||||
|
||||
// The topologicalOrder is read right-to-left in the final result
|
||||
// + Output is handled in main as FILO, similar to a stack
|
||||
return topological;
|
||||
return order;
|
||||
}
|
||||
|
||||
|
|
|
@ -17,11 +17,46 @@
|
|||
#include <vector>
|
||||
#include <queue>
|
||||
#include <unordered_set>
|
||||
#include <unordered_map>
|
||||
|
||||
|
||||
/******************************************************************************/
|
||||
// Structures for tracking information gathered from various traversals
|
||||
struct Node;
|
||||
// Color represents the discovery status of any given node
|
||||
// + White is undiscovered, Gray is in progress, Black is fully discovered
|
||||
enum Color {White, Gray, Black};
|
||||
|
||||
// Information used in all searches
|
||||
struct SearchInfo {
|
||||
// Coloring of the nodes is used in both DFS and BFS
|
||||
Color discovered = White;
|
||||
};
|
||||
|
||||
// Information that is only used in BFS
|
||||
struct BFS : SearchInfo {
|
||||
// Used to represent distance from start node
|
||||
int distance = 0;
|
||||
// Used to represent the parent node that discovered this node
|
||||
// + If we use this node as the starting point, this will remain a nullptr
|
||||
const Node *predecessor = nullptr;
|
||||
};
|
||||
|
||||
// Information that is only used in DFS
|
||||
struct DFS : SearchInfo {
|
||||
// Create a pair to track discovery / finish time
|
||||
// + Discovery time is the iteration the node is first discovered
|
||||
// + Finish time is the iteration the node has been checked completely
|
||||
// ++ A finished node has considered all adjacent nodes
|
||||
std::pair<int, int> discoveryFinish;
|
||||
};
|
||||
|
||||
// Store search information in unordered_maps so we can pass it around easily
|
||||
// + Allows each node to store relative information on the traversal
|
||||
using InfoBFS = std::unordered_map<int, struct BFS>;
|
||||
using InfoDFS = std::unordered_map<int, struct DFS>;
|
||||
|
||||
|
||||
/******************************************************************************/
|
||||
// Node structure for representing a graph
|
||||
struct Node {
|
||||
|
@ -38,37 +73,11 @@ public:
|
|||
friend void swap(Node &a, Node &b) {
|
||||
std::swap(a.number, b.number);
|
||||
std::swap(a.adjacent, b.adjacent);
|
||||
std::swap(a.color, b.color);
|
||||
std::swap(a.discoveryFinish, b.discoveryFinish);
|
||||
}
|
||||
|
||||
// Don't allow anyone to change these values when using a const reference
|
||||
int number;
|
||||
std::vector<int> adjacent;
|
||||
|
||||
// Mutable members so we can update these values when using a const reference
|
||||
// + Since they need to be modified during traversals
|
||||
|
||||
// Coloring of the nodes are used in both DFS and BFS
|
||||
mutable Color color = White;
|
||||
|
||||
// Used in BFS to represent distance from start node
|
||||
mutable int distance = 0;
|
||||
// Used in BFS to represent the parent node that discovered this node
|
||||
// + If we use this node as the starting point, this will remain a nullptr
|
||||
mutable const Node *predecessor = nullptr;
|
||||
|
||||
// Create a pair to track discovery / finish time when using DFS
|
||||
// + Discovery time is the iteration the node is first discovered
|
||||
// + Finish time is the iteration the node has been checked completely
|
||||
// ++ A finished node has considered all adjacent nodes
|
||||
mutable std::pair<int, int> discoveryFinish;
|
||||
|
||||
// Define a comparator for std::sort
|
||||
// + This will help to sort nodes by finished time after traversal
|
||||
static bool FinishedSort(const Node &node1, const Node &node2)
|
||||
{ return node1.discoveryFinish.second < node2.discoveryFinish.second;}
|
||||
|
||||
// Define operator== for std::find; And comparisons between nodes
|
||||
bool operator==(const Node &b) const { return this->number == b.number;}
|
||||
// Define an operator!= for comparing nodes for inequality
|
||||
|
@ -83,24 +92,21 @@ public:
|
|||
// Constructor
|
||||
explicit Graph(std::vector<Node> nodes) : nodes_(std::move(nodes)) {}
|
||||
|
||||
|
||||
// Breadth First Search
|
||||
void BFS(const Node& startNode) const;
|
||||
InfoBFS BFS(const Node& startNode) const;
|
||||
std::deque<Node> PathBFS(const Node &start, const Node &finish) const;
|
||||
|
||||
|
||||
// Depth First Search
|
||||
void DFS() const;
|
||||
InfoDFS DFS() const;
|
||||
// An alternate DFS that checks each node of the graph beginning at startNode
|
||||
void DFS(const Node &startNode) const;
|
||||
InfoDFS DFS(const Node &startNode) const;
|
||||
// Visit function is used in both versions of DFS
|
||||
void DFSVisit(int &time, const Node& startNode) const;
|
||||
void DFSVisit(int &time, const Node& startNode, InfoDFS &searchInfo) const;
|
||||
// Topological sort, using DFS
|
||||
std::vector<Node> TopologicalSort(const Node &startNode) const;
|
||||
|
||||
|
||||
// Returns a copy of a node with the number i within the graph
|
||||
// + This uses the private, non-const accessor GetNode()
|
||||
// + This uses the private, non-const accessor GetNode() and returns a copy
|
||||
inline Node GetNodeCopy(int i) { return GetNode(i);}
|
||||
// Return a constant iterator for reading node values
|
||||
inline std::vector<Node>::const_iterator NodeBegin() { return nodes_.cbegin();}
|
||||
|
@ -109,7 +115,7 @@ private:
|
|||
// A non-const accessor for direct access to a node with the number value i
|
||||
inline Node & GetNode(int i)
|
||||
{ return *std::find(nodes_.begin(), nodes_.end(), Node(i, {}));}
|
||||
// For use with const member functions to access mutable values
|
||||
// For grabbing a const qualified node
|
||||
inline const Node & GetNode(int i) const
|
||||
{ return *std::find(nodes_.begin(), nodes_.end(), Node(i, {}));}
|
||||
|
||||
|
|
Loading…
Reference in New Issue