Initial commit for working on weighted-graph implementation
This commit is contained in:
parent
64df3419a0
commit
835dbc7f7d
|
@ -0,0 +1,22 @@
|
|||
################################################################################
|
||||
## Author: Shaun Reed ##
|
||||
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
|
||||
## About: A basic CMakeLists configuration to test RBT implementation ##
|
||||
## ##
|
||||
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
|
||||
################################################################################
|
||||
#
|
||||
|
||||
cmake_minimum_required(VERSION 3.15)
|
||||
|
||||
project(
|
||||
#[[NAME]] WeightedGraph
|
||||
VERSION 1.0
|
||||
DESCRIPTION "Practice implementing and using weighted graphs in C++"
|
||||
LANGUAGES CXX
|
||||
)
|
||||
|
||||
add_library(lib-graph-weighted "lib-graph.cpp")
|
||||
|
||||
add_executable(graph-test-weighted "graph.cpp")
|
||||
target_link_libraries(graph-test-weighted lib-graph-weighted)
|
|
@ -0,0 +1,140 @@
|
|||
/*##############################################################################
|
||||
## Author: Shaun Reed ##
|
||||
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
|
||||
## About: An example of an object graph implementation ##
|
||||
## Algorithms in this example are found in MIT Intro to Algorithms ##
|
||||
## ##
|
||||
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
|
||||
################################################################################
|
||||
*/
|
||||
|
||||
#include "lib-graph.hpp"
|
||||
|
||||
|
||||
int main (const int argc, const char * argv[])
|
||||
{
|
||||
// We could initialize the graph with some localNodes...
|
||||
std::vector<Node> localNodes{
|
||||
{1, {2, 5}}, // Node 1
|
||||
{2, {1, 6}}, // Node 2
|
||||
{3, {4, 6, 7}},
|
||||
{4, {3, 7, 8}},
|
||||
{5, {1}},
|
||||
{6, {2, 3, 7}},
|
||||
{7, {3, 4, 6, 8}},
|
||||
{8, {4, 6}},
|
||||
};
|
||||
Graph bfsGraphInit(localNodes);
|
||||
|
||||
|
||||
std::cout << "\n\n##### Breadth First Search #####\n";
|
||||
// Or we could use an initializer list...
|
||||
// Initialize a example graph for Breadth First Search
|
||||
Graph bfsGraph(
|
||||
{
|
||||
{1, {2, 5}}, // Node 1
|
||||
{2, {1, 6}}, // Node 2...
|
||||
{3, {4, 6, 7}},
|
||||
{4, {3, 7, 8}},
|
||||
{5, {1}},
|
||||
{6, {2, 3, 7}},
|
||||
{7, {3, 4, 6, 8}},
|
||||
{8, {4, 6}},
|
||||
}
|
||||
);
|
||||
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||||
// + Chapter 22, Figure 22.3 on BFS
|
||||
bfsGraph.BFS(bfsGraph.GetNodeCopy(2));
|
||||
|
||||
std::cout << "\nTesting finding a path between two nodes using BFS...\n";
|
||||
// Test finding a path between two nodes using BFS
|
||||
auto path = bfsGraph.PathBFS(
|
||||
bfsGraph.GetNodeCopy(1), bfsGraph.GetNodeCopy(7)
|
||||
);
|
||||
// If we were returned an empty path, it doesn't exist
|
||||
if (path.empty()) std::cout << "No valid path found!\n";
|
||||
else {
|
||||
// If we were returned a path, print it
|
||||
std::cout << "\nValid path from " << path.front().number
|
||||
<< " to " << path.back().number << ": ";
|
||||
for (const auto &node : path) {
|
||||
std::cout << node.number << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
|
||||
std::cout << "\n\n##### Depth First Search #####\n";
|
||||
// Initialize an example graph for Depth First Search
|
||||
Graph dfsGraph(
|
||||
{
|
||||
{1, {2, 4}},
|
||||
{2, {5}},
|
||||
{3, {5, 6}},
|
||||
{4, {2}},
|
||||
{5, {4}},
|
||||
{6, {6}},
|
||||
}
|
||||
);
|
||||
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||||
// + Chapter 22, Figure 22.4 on DFS
|
||||
dfsGraph.DFS();
|
||||
|
||||
|
||||
std::cout << "\n\n##### Topological Sort #####\n";
|
||||
// Initialize an example graph for Depth First Search
|
||||
// + The order of initialization is important
|
||||
// + To produce the same result as seen in the book
|
||||
// ++ If the order is changed, other valid topological orders will be found
|
||||
// The book starts on the 'shirt' node (with the number 6, in this example)
|
||||
Graph topologicalGraph (
|
||||
{
|
||||
{1, {4, 5}}, // undershorts
|
||||
{2, {5}}, // socks
|
||||
{3, {}}, // watch
|
||||
{4, {5, 7}}, // pants
|
||||
{5, {}}, // shoes
|
||||
{6, {8, 7}}, // shirt
|
||||
{7, {9}}, // belt
|
||||
{8, {9}}, // tie
|
||||
{9, {}}, // jacket
|
||||
}
|
||||
);
|
||||
|
||||
// The graph traversed in this example is seen in MIT Intro to Algorithms
|
||||
// + Chapter 22, Figure 22.4 on DFS
|
||||
// Unlike the simple-graph example, this final result matches MIT Algorithms
|
||||
// + Aside from the placement of the watch node, which is not connected
|
||||
// + This is because the node is visited after all other nodes are finished
|
||||
std::vector<Node> order =
|
||||
topologicalGraph.TopologicalSort(topologicalGraph.GetNodeCopy(6));
|
||||
std::cout << "\nTopological order: ";
|
||||
while (!order.empty()) {
|
||||
std::cout << order.back().number << " ";
|
||||
order.pop_back();
|
||||
}
|
||||
std::cout << std::endl << std::endl;
|
||||
|
||||
// If we want the topological order to match what is seen in the book
|
||||
// + We have to initialize the graph carefully to get this result -
|
||||
Graph topologicalGraph2 (
|
||||
{
|
||||
{6, {8, 7}}, // shirt
|
||||
{8, {9}}, // tie
|
||||
{7, {9}}, // belt
|
||||
{9, {}}, // jacket
|
||||
{3, {}}, // watch
|
||||
{1, {4, 5}}, // undershorts
|
||||
{4, {5, 7}}, // pants
|
||||
{5, {}}, // shoes
|
||||
{2, {5}}, // socks
|
||||
}
|
||||
);
|
||||
auto order2 = topologicalGraph2.TopologicalSort(*topologicalGraph2.NodeBegin());
|
||||
std::cout << "\nTopological order: ";
|
||||
while (!order2.empty()) {
|
||||
std::cout << order2.back().number << " ";
|
||||
order2.pop_back();
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
|
@ -0,0 +1,189 @@
|
|||
/*##############################################################################
|
||||
## Author: Shaun Reed ##
|
||||
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
|
||||
## About: Driver program to test object graph implementation ##
|
||||
## ##
|
||||
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
|
||||
################################################################################
|
||||
*/
|
||||
|
||||
#include "lib-graph.hpp"
|
||||
|
||||
|
||||
InfoBFS Graph::BFS(const Node& startNode) const
|
||||
{
|
||||
// Create local object to track the information gathered during traversal
|
||||
InfoBFS searchInfo;
|
||||
|
||||
// Create a queue to visit discovered nodes in FIFO order
|
||||
std::queue<const Node *> visitQueue;
|
||||
|
||||
// Mark the startNode as in progress until we finish checking adjacent nodes
|
||||
searchInfo[startNode.number].discovered = Gray;
|
||||
|
||||
// Visit the startNode
|
||||
visitQueue.push(&startNode);
|
||||
|
||||
// Continue to visit nodes until there are none left in the graph
|
||||
while (!visitQueue.empty()) {
|
||||
// Remove thisNode from the visitQueue, storing its vertex locally
|
||||
const Node * thisNode = visitQueue.front();
|
||||
visitQueue.pop();
|
||||
std::cout << "Visiting node " << thisNode->number << std::endl;
|
||||
|
||||
// Check if we have already discovered all the adjacentNodes to thisNode
|
||||
for (const auto &adjacent : thisNode->adjacent) {
|
||||
if (searchInfo[adjacent.GetNumber()].discovered == White) {
|
||||
std::cout << "Found undiscovered adjacentNode: " << adjacent.GetNumber()
|
||||
<< "\n";
|
||||
// Mark the adjacent node as in progress
|
||||
searchInfo[adjacent.GetNumber()].discovered = Gray;
|
||||
searchInfo[adjacent.GetNumber()].distance =
|
||||
searchInfo[thisNode->number].distance + 1;
|
||||
searchInfo[adjacent.GetNumber()].predecessor =
|
||||
&GetNode(thisNode->number);
|
||||
|
||||
// Add the discovered node the the visitQueue
|
||||
visitQueue.push(&GetNode(adjacent.GetNumber()));
|
||||
}
|
||||
}
|
||||
// We are finished with this node and the adjacent nodes; Mark it discovered
|
||||
searchInfo[thisNode->number].discovered = Black;
|
||||
}
|
||||
|
||||
// Return the information gathered from this search, JIC caller needs it
|
||||
return searchInfo;
|
||||
}
|
||||
|
||||
std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
|
||||
{
|
||||
// Store the path as copies of each node
|
||||
// + If the caller modifies these, it will not impact the graph's data
|
||||
std::deque<Node> path;
|
||||
|
||||
InfoBFS searchInfo = BFS(start);
|
||||
const Node * next = searchInfo[finish.number].predecessor;
|
||||
bool isValid = false;
|
||||
do {
|
||||
// If we have reached the start node, we have found a valid path
|
||||
if (*next == Node(start)) isValid = true;
|
||||
|
||||
// Add the node to the path as we check each node
|
||||
// + Use emplace_front to call the Node copy constructor
|
||||
path.emplace_front(*next);
|
||||
|
||||
// Move to the next node
|
||||
next = searchInfo[next->number].predecessor;
|
||||
} while (next != nullptr);
|
||||
// Use emplace_back to call Node copy constructor
|
||||
path.emplace_back(finish);
|
||||
|
||||
// If we never found a valid path, erase all contents of the path
|
||||
if (!isValid) path.erase(path.begin(), path.end());
|
||||
|
||||
// Return the path, the caller should handle empty paths accordingly
|
||||
return path;
|
||||
}
|
||||
|
||||
InfoDFS Graph::DFS() const
|
||||
{
|
||||
// Track the nodes we have discovered
|
||||
InfoDFS searchInfo;
|
||||
int time = 0;
|
||||
|
||||
// Visit each node in the graph
|
||||
for (const auto& node : nodes_) {
|
||||
std::cout << "Visiting node " << node.number << std::endl;
|
||||
// If the node is undiscovered, visit it
|
||||
if (searchInfo[node.number].discovered == White) {
|
||||
std::cout << "Found undiscovered node: " << node.number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(time, node, searchInfo);
|
||||
}
|
||||
}
|
||||
|
||||
return searchInfo;
|
||||
}
|
||||
|
||||
InfoDFS Graph::DFS(const Node &startNode) const
|
||||
{
|
||||
// Track the nodes we have discovered
|
||||
InfoDFS searchInfo;
|
||||
int time = 0;
|
||||
|
||||
auto startIter = std::find(nodes_.begin(), nodes_.end(),
|
||||
Node(startNode.number, {})
|
||||
);
|
||||
|
||||
// beginning at startNode, visit each node in the graph until we reach the end
|
||||
while (startIter != nodes_.end()) {
|
||||
std::cout << "Visiting node " << startIter->number << std::endl;
|
||||
// If the startIter is undiscovered, visit it
|
||||
if (searchInfo[startIter->number].discovered == White) {
|
||||
std::cout << "Found undiscovered node: " << startIter->number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(time, *startIter, searchInfo);
|
||||
}
|
||||
startIter++;
|
||||
}
|
||||
|
||||
// Once we reach the last node, check the beginning for unchecked nodes
|
||||
startIter = nodes_.begin();
|
||||
|
||||
// Once we reach the initial startNode, we have checked all nodes
|
||||
while (*startIter != startNode) {
|
||||
std::cout << "Visiting node " << startIter->number << std::endl;
|
||||
// If the startIter is undiscovered, visit it
|
||||
if (searchInfo[startIter->number].discovered == White) {
|
||||
std::cout << "Found undiscovered node: " << startIter->number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(time, *startIter, searchInfo);
|
||||
}
|
||||
startIter++;
|
||||
}
|
||||
|
||||
return searchInfo;
|
||||
}
|
||||
|
||||
void Graph::DFSVisit(int &time, const Node& startNode, InfoDFS &searchInfo) const
|
||||
{
|
||||
searchInfo[startNode.number].discovered = Gray;
|
||||
time++;
|
||||
searchInfo[startNode.number].discoveryFinish.first = time;
|
||||
|
||||
// Check the adjacent nodes of the startNode
|
||||
for (const auto &adjacent : startNode.adjacent) {
|
||||
auto iter = std::find(nodes_.begin(), nodes_.end(),
|
||||
Node(adjacent.GetNumber(), {}));
|
||||
// If the adjacentNode is undiscovered, visit it
|
||||
// + Offset by 1 to account for 0 index of discovered vector
|
||||
if (searchInfo[iter->number].discovered == White) {
|
||||
std::cout << "Found undiscovered adjacentNode: "
|
||||
<< GetNode(adjacent.GetNumber()).number << std::endl;
|
||||
// Visiting the undiscovered node will check it's adjacent nodes
|
||||
DFSVisit(time, *iter, searchInfo);
|
||||
}
|
||||
}
|
||||
searchInfo[startNode.number].discovered = Black;
|
||||
time++;
|
||||
searchInfo[startNode.number].discoveryFinish.second = time;
|
||||
}
|
||||
|
||||
std::vector<Node> Graph::TopologicalSort(const Node &startNode) const
|
||||
{
|
||||
InfoDFS topological = DFS(GetNode(startNode.number));
|
||||
|
||||
std::vector<Node> order(nodes_);
|
||||
|
||||
auto comp = [&topological](const Node &a, const Node &b) {
|
||||
return (topological[a.number].discoveryFinish.second <
|
||||
topological[b.number].discoveryFinish.second);
|
||||
};
|
||||
|
||||
std::sort(order.begin(), order.end(), comp);
|
||||
|
||||
// The topologicalOrder is read right-to-left in the final result
|
||||
// + Output is handled in main as FILO, similar to a stack
|
||||
return order;
|
||||
}
|
||||
|
|
@ -0,0 +1,134 @@
|
|||
/*##############################################################################
|
||||
## Author: Shaun Reed ##
|
||||
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
|
||||
## About: An example of an object graph implementation ##
|
||||
## Algorithms in this example are found in MIT Intro to Algorithms ##
|
||||
## ##
|
||||
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
|
||||
################################################################################
|
||||
*/
|
||||
#ifndef LIB_GRAPH_HPP
|
||||
#define LIB_GRAPH_HPP
|
||||
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <queue>
|
||||
#include <unordered_set>
|
||||
#include <unordered_map>
|
||||
|
||||
|
||||
/******************************************************************************/
|
||||
// Structures for tracking information gathered from various traversals
|
||||
struct Node;
|
||||
// Color represents the discovery status of any given node
|
||||
// + White is undiscovered, Gray is in progress, Black is fully discovered
|
||||
enum Color {White, Gray, Black};
|
||||
|
||||
// Information used in all searches
|
||||
struct SearchInfo {
|
||||
// Coloring of the nodes is used in both DFS and BFS
|
||||
Color discovered = White;
|
||||
};
|
||||
|
||||
// Information that is only used in BFS
|
||||
struct BFS : SearchInfo {
|
||||
// Used to represent distance from start node
|
||||
int distance = 0;
|
||||
// Used to represent the parent node that discovered this node
|
||||
// + If we use this node as the starting point, this will remain a nullptr
|
||||
const Node *predecessor = nullptr;
|
||||
};
|
||||
|
||||
// Information that is only used in DFS
|
||||
struct DFS : SearchInfo {
|
||||
// Create a pair to track discovery / finish time
|
||||
// + Discovery time is the iteration the node is first discovered
|
||||
// + Finish time is the iteration the node has been checked completely
|
||||
// ++ A finished node has considered all adjacent nodes
|
||||
std::pair<int, int> discoveryFinish;
|
||||
};
|
||||
|
||||
// Store search information in unordered_maps so we can pass it around easily
|
||||
// + Allows each node to store relative information on the traversal
|
||||
using InfoBFS = std::unordered_map<int, struct BFS>;
|
||||
using InfoDFS = std::unordered_map<int, struct DFS>;
|
||||
|
||||
|
||||
/******************************************************************************/
|
||||
// Node structure for representing a graph
|
||||
struct Link;
|
||||
|
||||
struct Node {
|
||||
public:
|
||||
// Constructors
|
||||
Node(const Node &rhs) = default;
|
||||
Node & operator=(Node rhs) {
|
||||
if (this == &rhs) return *this;
|
||||
swap(*this, rhs);
|
||||
return *this;
|
||||
}
|
||||
Node(int num, std::vector<Link> adj) : number(num), adjacent(std::move(adj)) {}
|
||||
|
||||
friend void swap(Node &a, Node &b) {
|
||||
std::swap(a.number, b.number);
|
||||
std::swap(a.adjacent, b.adjacent);
|
||||
}
|
||||
|
||||
int number;
|
||||
std::vector<Link> adjacent;
|
||||
|
||||
// Define operator== for std::find; And comparisons between nodes
|
||||
bool operator==(const Node &b) const { return this->number == b.number;}
|
||||
// Define an operator!= for comparing nodes for inequality
|
||||
bool operator!=(const Node &b) const { return this->number != b.number;}
|
||||
};
|
||||
|
||||
struct Link {
|
||||
explicit Link(Node *n, int w=0) : node(n), weight(w) {}
|
||||
|
||||
Node *node;
|
||||
int weight;
|
||||
inline int GetNumber() const { return node->number;}
|
||||
};
|
||||
|
||||
/******************************************************************************/
|
||||
// Graph class declaration
|
||||
class Graph {
|
||||
public:
|
||||
// Constructor
|
||||
explicit Graph(std::vector<Node> nodes) : nodes_(std::move(nodes)) {}
|
||||
|
||||
// Breadth First Search
|
||||
InfoBFS BFS(const Node& startNode) const;
|
||||
std::deque<Node> PathBFS(const Node &start, const Node &finish) const;
|
||||
|
||||
// Depth First Search
|
||||
InfoDFS DFS() const;
|
||||
// An alternate DFS that checks each node of the graph beginning at startNode
|
||||
InfoDFS DFS(const Node &startNode) const;
|
||||
// Visit function is used in both versions of DFS
|
||||
void DFSVisit(int &time, const Node& startNode, InfoDFS &searchInfo) const;
|
||||
// Topological sort, using DFS
|
||||
std::vector<Node> TopologicalSort(const Node &startNode) const;
|
||||
|
||||
// Returns a copy of a node with the number i within the graph
|
||||
// + This uses the private, non-const accessor GetNode() and returns a copy
|
||||
inline Node GetNodeCopy(int i) { return GetNode(i);}
|
||||
// Return a constant iterator for reading node values
|
||||
inline std::vector<Node>::const_iterator NodeBegin() { return nodes_.cbegin();}
|
||||
|
||||
private:
|
||||
// A non-const accessor for direct access to a node with the number value i
|
||||
inline Node & GetNode(int i)
|
||||
{ return *std::find(nodes_.begin(), nodes_.end(), Node(i, {}));}
|
||||
// For grabbing a const qualified node
|
||||
inline const Node & GetNode(int i) const
|
||||
{ return *std::find(nodes_.begin(), nodes_.end(), Node(i, {}));}
|
||||
|
||||
std::vector<Node> nodes_;
|
||||
};
|
||||
|
||||
#endif // LIB_GRAPH_HPP
|
Loading…
Reference in New Issue