Add Python project examples

+ Neural network CLI
+ Hidden Markov Model CLI
+ K-Means clustering CLI
+ Linear regression CLI
+ Screenshots, updated README instructions
This commit is contained in:
2022-02-06 13:39:26 -05:00
parent bbbf404340
commit 940d035638
22 changed files with 2523 additions and 0 deletions

View File

@@ -0,0 +1,65 @@
Install required dependencies for matplotlib GUI frontend and all pip other packages for this project
```bash
sudo apt install python3-tk
python3.9 -m pip install -r requirements.txt
```
Given a set of tuple `(X,Y)` data points as `[(X, Y), .., (X, Y)]`, determine the
best fitting line plot, and then apply this projection to predict the dependent `Y`
value using an independent `GIVEN_X` value.
```bash
python3.9 linear-regression.py -h
usage: linear-regression.py [-h] [--silent] [--file [FILE_PATH]] [GIVEN_X] [X,Y ...]
Find most fitting line plot for given data points and predict value given some X
positional arguments:
GIVEN_X Value for X for prediction using linear regression
(default: '4.5')
X,Y A list of data points separated by spaces as: x,y x,y x,y ...
(default: '[(1, 3), (2, 7), (3, 5), (4, 9), (5, 11), (6, 12), (7, 15)]')
optional arguments:
-h, --help show this help message and exit
--silent When this flag is set, line plot visualization will not be shown
(default: 'False')
--file [FILE_PATH], -f [FILE_PATH]
Optionally provide file for data to be read from. Each point must be on it's own line with format x,y
```
Running linear regression program
```bash
python3.9 linear-regression.py --file ./input.txt --silent
Finding fitting line plot for given data [(1, 3), (2, 7), (3, 5), (4, 9), (5, 11), (6, 12), (7, 15)]
points_avg: (5.117647058823529, 5.235294117647059)
variance: (241.76470588235296, 193.05882352941177)
sigma: (3.887196176892422, 3.4736402333270258)
covariance: 0.8455882352941174
correlation: 0.0626235432924427
Our line Y = BX + A must pass through the point (5.117647058823529, 5.235294117647059)
Y = (0.05596107055961069)X + 4.9489051094890515
For X = 4.5, Y is predicted to be 5.200729927007299
```
By default, the following linear regression is calculated and displayed
```bash
python3.9 linear-regression.py
Finding fitting line plot for given data [(1, 3), (2, 7), (3, 5), (4, 9), (5, 11), (6, 12), (7, 15)]
points_avg: (4.0, 8.857142857142858)
variance: (28.0, 104.85714285714286)
sigma: (2.160246899469287, 4.180453381654971)
covariance: 8.666666666666666
correlation: 0.9596775116832306
Our line Y = BX + A must pass through the point (4.0, 8.857142857142858)
Y = (1.8571428571428565)X + 1.4285714285714315
For X = 4.5, Y is predicted to be 9.785714285714285
```
![](screenshot.png)

View File

@@ -0,0 +1,17 @@
1,2
2,3
2,2
5,6
6,7
6,8
7,11
1,1
2,6
4,8
6,1
3,2
15,5
10,2
2,10
11,4
4,11

View File

@@ -0,0 +1,198 @@
################################################################################
# Author: Shaun Reed #
# About: Linear regression CLI #
# Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 #
################################################################################
from ast import literal_eval
from matplotlib import pyplot as plt
from typing import List
import argparse
import math
import numpy as np
import sys
################################################################################
# Commandline Argument Parser
################################################################################
# ==============================================================================
def init_parser():
parser = argparse.ArgumentParser(
description='Find most fitting line plot for given data points and predict value given some X',
formatter_class=argparse.RawTextHelpFormatter
)
parser.add_argument(
'given', metavar='GIVEN_X', type=float, nargs='?',
help=
'''Value for X for prediction using linear regression
(default: '%(default)s')
''',
default=4.5
)
parser.add_argument(
'data', metavar='X,Y', type=point, nargs='*',
help=
'''A list of data points separated by spaces as: x,y x,y x,y ...
(default: '%(default)s')
''',
default=[(1, 3), (2, 7), (3, 5), (4, 9), (5, 11), (6, 12), (7, 15)]
)
parser.add_argument(
'--silent', action='store_true',
help=
'''When this flag is set, line plot visualization will not be shown
(default: '%(default)s')
''',
default=False
)
parser.add_argument(
'--file', '-f', metavar='FILE_PATH', nargs='?', type=open,
help=
'''Optionally provide file for data to be read from. Each point must be on it\'s own line with format x,y
''',
)
return parser
def point(arg):
"""
Helper function for parsing x,y points provided through argparse CLI
:param arg: A single argument passed to an option or positional argument
:return: A tuple (x, y) representing a data point
"""
try:
x, y = literal_eval(arg)
return x, y
except:
raise argparse.ArgumentTypeError("Please provide data points in x,y format")
################################################################################
# Linear Regression Calculation
################################################################################
# ==============================================================================
def points_average(data):
"""
Finds average (x, y) for points in data list [(x, y), (x, y), ...]
Used for updating cluster centroid positions
:param data: List [(x, y), (x, y), ...]
:return: An average (x, y) position for the list of points
"""
x, y = 0, 0
for pair in data:
x += pair[0]
y += pair[1]
x = float(x / len(data))
y = float(y / len(data))
return x, y
def points_variance(data, points_avg):
"""
Find variance for a series of data points
:param data: List of data points [(x, y), (x, y), ...]
:param points_avg: Average (x, y) position for the list of points in data
:return: Variance of X and Y for the data set as a tuple (x, y)
"""
x, y = 0, 0
for point in data:
x += math.pow((point[0] - points_avg[0]), 2)
y += math.pow((point[1] - points_avg[1]), 2)
return x, y
def points_covariance(data, points_avg):
"""
Find covariance between X, Y within the data set
:param data: List of data points [(x, y), (x, y), ...]
:param points_avg: Tuple of average X, Y for data set list
:return: Single float value representing covariance
"""
cov = 0
for point in data:
cov += (point[0] - points_avg[0]) * (point[1] - points_avg[1])
return float(cov / (len(data) - 1))
def show_regression(data, beta, alpha):
"""
Shows the linear regression in the matplotlib subplot
Line drawn with Y = BX + A
:param data: Data to show on the scatter plot
:param beta: Value for B in the line equation
:param alpha: Value for A in the line equation
"""
dataX, dataY = zip(*data)
scaleX = np.linspace(min(dataX) - 1, max(dataX) + 1, 100)
scaleY = beta * scaleX + alpha
plt.plot(scaleX, scaleY, c='g')
plt.scatter(dataX, dataY, c='k')
print(f'For X = {context.given}, Y is predicted to be {beta * context.given + alpha} ')
plt.scatter(context.given, beta * context.given + alpha, c='#e6e600')
plt.show()
################################################################################
# Main
################################################################################
# ==============================================================================
def main(args: List[str]):
parser = init_parser()
global context
context = parser.parse_args(args[1:])
print(f'Finding fitting line plot for given data {context.data}')
if context.file: # If a file was provided, use that data instead
context.data = [literal_eval(line.rstrip()) for line in context.file]
context.data = [(float(x), float(y)) for x, y in context.data]
# Find the average for the data X and Y points
data_avg = points_average(context.data)
print(f'points_avg: {data_avg}')
# Find the variance for the data X and Y points
data_variance = points_variance(context.data, data_avg)
print(f'variance: {data_variance}')
# Find the standard deviations for X and Y values
data_sigma = (math.sqrt(float(data_variance[0] / (len(context.data) - 1))),
math.sqrt(float(data_variance[1] / (len(context.data) - 1))))
print(f'sigma: {data_sigma}')
# Find the covariance between X, Y within data set
data_covariance = points_covariance(context.data, data_avg)
print(f'covariance: {data_covariance}')
# Find correlation between X, Y within data set
data_correlation = (1.0/math.prod(data_sigma)) * data_covariance
print(f'correlation: {data_correlation}')
# Find equation for linear regression for the given data set
print(f'Our line Y = BX + A must pass through the point {data_avg}')
data_beta = data_correlation * float(data_sigma[1] / data_sigma[0])
data_alpha = data_avg[1] - data_beta * data_avg[0]
print(f'Y = ({data_beta})X + {data_alpha}')
# Show the final graph produced by linear regression calculations
# + Predicts the Y value, given the X value provided through the CLI
if not context.silent:
show_regression(context.data, data_beta, data_alpha)
if __name__ == "__main__":
sys.exit(main(sys.argv))

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB