Add Python project examples
+ Neural network CLI + Hidden Markov Model CLI + K-Means clustering CLI + Linear regression CLI + Screenshots, updated README instructions
This commit is contained in:
parent
bbbf404340
commit
940d035638
|
@ -0,0 +1,13 @@
|
|||
|
||||
This directory contains a collection of Python scripts or CLI tools that I've made.
|
||||
Each of these projects provide a `requirements.txt` that can be used to
|
||||
install the required Python packages and dependencies.
|
||||
|
||||
To install Python 3.9 and `pip`
|
||||
|
||||
```bash
|
||||
sudo apt install python3.9 python3-pip
|
||||
python3.9 -m pip install -U pip
|
||||
```
|
||||
|
||||
Additional setup instructions specific to each project provided in project README
|
|
@ -0,0 +1,95 @@
|
|||
Install required dependencies for matplotlib GUI frontend and all pip other packages for this project
|
||||
|
||||
```bash
|
||||
sudo apt install python3-tk
|
||||
python3.9 -m pip install -r requirements.txt
|
||||
```
|
||||
|
||||
CLI to run K-Means clustering algorithm on a set of data.
|
||||
Data can be provided or randomly generated for testing.
|
||||
|
||||
```bash
|
||||
python3.9 k-means.py -h
|
||||
usage: k-means.py [-h] [--data [X,Y ...]] [--seeds [X,Y ...]] [--silent] [--verbose] [--random] [--radius [RADIUS]]
|
||||
[--lock-radius] [--file [FILE_PATH]]
|
||||
[CLUSTER_COUNT] [CENTROID_SHIFT] [LOOP_COUNT]
|
||||
|
||||
K-means clustering program for clustering data read from a file, terminal, or randomly generated
|
||||
|
||||
positional arguments:
|
||||
CLUSTER_COUNT Total number of desired clusters
|
||||
(default: '2')
|
||||
|
||||
CENTROID_SHIFT Centroid shift threshold. If cluster centroids move less-than this value, clustering is finished
|
||||
(default: '1.0')
|
||||
|
||||
LOOP_COUNT Maximum count of loops to perform clustering
|
||||
(default: '3')
|
||||
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
--data [X,Y ...], -d [X,Y ...]
|
||||
A list of data points separated by spaces as: x,y x,y x,y ...
|
||||
(default: '[(1.0, 2.0), (2.0, 3.0), (2.0, 2.0), (5.0, 6.0), (6.0, 7.0), (6.0, 8.0), (7.0, 11.0), (1.0, 1.0)]')
|
||||
|
||||
--seeds [X,Y ...], --seed [X,Y ...], -s [X,Y ...]
|
||||
A list of seed points separated by spaces as: x,y x,y x,y ...
|
||||
Number of seeds provided must match CLUSTER_COUNT, or else CLUSTER_COUNT will be overriden.
|
||||
|
||||
--silent When this flag is set, scatter plot visualizations will not be shown
|
||||
(default: 'False')
|
||||
|
||||
--verbose, -v When this flag is set, cluster members will be shown in output
|
||||
(default: 'False')
|
||||
|
||||
--random, -r When this flag is set, data will be randomly generated
|
||||
(default: 'False')
|
||||
|
||||
--radius [RADIUS] Initial radius to use for clusters
|
||||
(default: 'None')
|
||||
|
||||
--lock-radius, -l When this flag is set, centroid radius will not be recalculated
|
||||
(default: 'False')
|
||||
|
||||
--file [FILE_PATH], -f [FILE_PATH]
|
||||
Optionally provide file for data to be read from. Each point must be on it's own line with format x,y
|
||||
```
|
||||
|
||||
Running k-means clustering program
|
||||
```bash
|
||||
python3.9 k-means.py --file ./input.txt --silent
|
||||
Finding K-means clusters for given data [(1.0, 2.0), (2.0, 3.0), (2.0, 2.0), (5.0, 6.0), (6.0, 7.0), (6.0, 8.0), (7.0, 11.0), (1.0, 1.0), (5.0, 5.0), (10.0, 10.0), (15.0, 15.0), (25.0, 25.0), (20.0, 20.0), (21.0, 21.0), (22.0, 22.0)]
|
||||
Using 2 clusters, 1.0 max centroid shift, and 3 iterations
|
||||
|
||||
Clustering iteration 0
|
||||
Updating cluster membership using cluster seeds, radius:
|
||||
((5.0000, 5.0000), 10.6066)
|
||||
((20.0000, 20.0000), 10.6066)
|
||||
Outliers present: set()
|
||||
|
||||
Updated clusters ([(5.0, 5.0), (20.0, 20.0)]) with new centroids [(4.5, 5.5), (20.6, 20.6)]
|
||||
New centroids [(4.5, 5.5), (20.6, 20.6)] shifted [0.7071, 0.8485] respectively
|
||||
|
||||
|
||||
Showing final cluster result...
|
||||
Initial cluster at (5.0000, 5.0000) moved to (4.5000, 5.5000)
|
||||
Total shift: 0.7071
|
||||
Final radius: 11.0365
|
||||
Initial radius: 10.6066
|
||||
Initial cluster at (20.0000, 20.0000) moved to (20.6000, 20.6000)
|
||||
Total shift: 0.8485
|
||||
Final radius: 11.0365
|
||||
Initial radius: 10.6066
|
||||
|
||||
Stopping...
|
||||
Cluster centroids have not shifted at least 1.0, clusters are stable
|
||||
```
|
||||
|
||||
Running k-means clustering program on some random example data shows the following visual output
|
||||
```bash
|
||||
python3.9 k-means.py --random
|
||||
# Output removed for GUI example
|
||||
```
|
||||
|
||||
![](screenshot.png)
|
|
@ -0,0 +1,15 @@
|
|||
1,2
|
||||
2,3
|
||||
2,2
|
||||
5,6
|
||||
6,7
|
||||
6,8
|
||||
7,11
|
||||
1,1
|
||||
5,5
|
||||
10,10
|
||||
15,15
|
||||
25,25
|
||||
20,20
|
||||
21,21
|
||||
22,22
|
|
@ -0,0 +1,438 @@
|
|||
################################################################################
|
||||
# Author: Shaun Reed #
|
||||
# About: K-Means clustering CLI #
|
||||
# Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 #
|
||||
################################################################################
|
||||
|
||||
from ast import literal_eval
|
||||
from itertools import chain
|
||||
from matplotlib import pyplot as plt
|
||||
from typing import List
|
||||
import argparse
|
||||
import math
|
||||
import numpy as np
|
||||
import random
|
||||
import sys
|
||||
|
||||
|
||||
################################################################################
|
||||
# CLI Argument Parser
|
||||
################################################################################
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
def init_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='K-means clustering program for clustering data read from a file, terminal, or randomly generated',
|
||||
formatter_class=argparse.RawTextHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'clusters', metavar='CLUSTER_COUNT', type=int, nargs='?',
|
||||
help=
|
||||
'''Total number of desired clusters
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=2
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'shift', metavar='CENTROID_SHIFT', type=float, nargs='?',
|
||||
help=
|
||||
'''Centroid shift threshold. If cluster centroids move less-than this value, clustering is finished
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=1.0
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'loops', metavar='LOOP_COUNT', type=int, nargs='?',
|
||||
help=
|
||||
'''Maximum count of loops to perform clustering
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=3
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--data', '-d', metavar='X,Y', type=point, nargs='*',
|
||||
help=
|
||||
'''A list of data points separated by spaces as: x,y x,y x,y ...
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=[(1.0, 2.0), (2.0, 3.0), (2.0, 2.0), (5.0, 6.0), (6.0, 7.0), (6.0, 8.0), (7.0, 11.0), (1.0, 1.0)]
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--seeds', '--seed', '-s', metavar='X,Y', type=point, nargs='*',
|
||||
help=
|
||||
'''A list of seed points separated by spaces as: x,y x,y x,y ...
|
||||
Number of seeds provided must match CLUSTER_COUNT, or else CLUSTER_COUNT will be overriden.
|
||||
''',
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--silent', action='store_true',
|
||||
help=
|
||||
'''When this flag is set, scatter plot visualizations will not be shown
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=False
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--verbose', '-v', action='store_true',
|
||||
help=
|
||||
'''When this flag is set, cluster members will be shown in output
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=False
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--random', '-r', action='store_true',
|
||||
help=
|
||||
'''When this flag is set, data will be randomly generated
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=False
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--radius', metavar='RADIUS', type=float, nargs='?',
|
||||
help=
|
||||
'''Initial radius to use for clusters
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=None
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--lock-radius', '-l', action='store_true',
|
||||
help=
|
||||
'''When this flag is set, centroid radius will not be recalculated
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=False
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--file', '-f', metavar='FILE_PATH', nargs='?', type=open,
|
||||
help=
|
||||
'''Optionally provide file for data to be read from. Each point must be on it\'s own line with format x,y
|
||||
''',
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
################################################################################
|
||||
# Helper Functions
|
||||
################################################################################
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
def point(arg):
|
||||
"""
|
||||
Helper function for parsing x,y points provided through argparse CLI
|
||||
|
||||
:param arg: A single argument passed to an option or positional argument
|
||||
:return: A tuple (x, y) representing a data point
|
||||
"""
|
||||
try:
|
||||
x, y = literal_eval(arg)
|
||||
return float(x), float(y) # Cast all point values to float
|
||||
except:
|
||||
raise argparse.ArgumentTypeError("Please provide data points in x,y format")
|
||||
|
||||
|
||||
def random_data():
|
||||
"""
|
||||
Generates random data points for testing clustering
|
||||
|
||||
:return: A list of random data point tuples [(1, 1), (2, 4), ...]
|
||||
"""
|
||||
data_size = random.randint(50, random.randint(100, 200))
|
||||
data = []
|
||||
for x in range(0, data_size):
|
||||
data.append((random.randint(0, 100), random.randint(0, 100)))
|
||||
return data
|
||||
|
||||
|
||||
def round_points(points, precision=4):
|
||||
"""
|
||||
Rounds all points in a list to a given decimal place
|
||||
|
||||
:param points: A list of data points to round to requested decimal place
|
||||
:param precision: The decimal place to round to
|
||||
:return: A list of points where (x, y) has been rounded to match requested precision value
|
||||
"""
|
||||
points = [(round(x, precision), round(y, precision)) for x,y in points]
|
||||
return points
|
||||
|
||||
|
||||
################################################################################
|
||||
# K-means Clustering
|
||||
################################################################################
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
def select_seeds(data):
|
||||
"""
|
||||
Randomly select N seeds where N is the number of clusters requested through the CLI
|
||||
|
||||
:param data: A list of data points [(0, 1), (2, 2), (1, 4), ...]
|
||||
:return: Dictionary of {seeds: radius}; For example {(2, 2): 5.0, (1, 4): 5.0}
|
||||
"""
|
||||
assert(len(data) > context.clusters)
|
||||
x, y = zip(*data)
|
||||
seeds = {} # Store seeds in a dictionary<seed, radius>
|
||||
for i in range(0, context.clusters):
|
||||
while True:
|
||||
new_seed = data[random.randint(0, len(data) - 1)]
|
||||
if new_seed not in seeds:
|
||||
break
|
||||
seeds[new_seed] = i if not context.radius else context.radius
|
||||
|
||||
if context.radius:
|
||||
# An initial radius was provided and applied. Use it.
|
||||
return seeds
|
||||
else:
|
||||
# No initial radius was provided, so calculate one
|
||||
return update_clusters(seeds)
|
||||
|
||||
|
||||
def points_average(data):
|
||||
"""
|
||||
Finds average (x, y) for points in data list [(x, y), (x, y), ...]
|
||||
Used for updating cluster centroid positions
|
||||
|
||||
:param data: List [(x, y), (x, y), ...]
|
||||
:return: An average (x, y) position for the list of points
|
||||
"""
|
||||
x, y = 0, 0
|
||||
for pair in data:
|
||||
x += pair[0]
|
||||
y += pair[1]
|
||||
x = float(x / len(data))
|
||||
y = float(y / len(data))
|
||||
return x, y
|
||||
|
||||
|
||||
def update_clusters(seeds, clusters=None):
|
||||
"""
|
||||
Seeds {(x, y), radius} for clusters must be provided
|
||||
If no clusters {(x, y), [members, ...]} are provided, initialize cluster radius given seeds
|
||||
If clusters are provided, update centroids and radius
|
||||
|
||||
:param seeds: Dictionary of {cluster_seed: radius}; Example {(x, y), radius, (x, y): radius, ...}
|
||||
:param clusters: Dictionary of {cluster_seed: member_list}; Example {(x, y): [(x, y), (x, y), ...], ...}
|
||||
:return: Cluster seeds dictionary with updates positions and radius values
|
||||
"""
|
||||
radius = sys.maxsize
|
||||
new_seeds = dict()
|
||||
if clusters is None: # If we only provided seeds, initialize their radius
|
||||
for seed in seeds:
|
||||
for other_seed in seeds.copy():
|
||||
if other_seed == seed:
|
||||
continue
|
||||
dist = math.dist(seed, other_seed)
|
||||
# Track the smallest distance between 2 centroids
|
||||
radius = dist if dist < radius else radius
|
||||
|
||||
# Update all seeds to the initial cluster radius
|
||||
radius /= 2
|
||||
for seed in seeds:
|
||||
seeds[seed] = radius
|
||||
else:
|
||||
# Update centroid positions for clusters if they were provided
|
||||
for centroid, members in clusters.items():
|
||||
cluster_data = set(members) | {centroid}
|
||||
avgX, avgY = points_average(cluster_data)
|
||||
new_seeds[tuple((avgX, avgY))] = seeds[centroid]
|
||||
# If we have passed the CLI flag to lock cluster radius, return new seeds without updating radius
|
||||
# + If we have not passed the -l flag, update cluster radius
|
||||
seeds = new_seeds if context.lock_radius else update_clusters(new_seeds)
|
||||
return seeds
|
||||
|
||||
|
||||
def cluster_data(data, seeds):
|
||||
"""
|
||||
Runs K-Means clustering on some provided data using a dictionary of cluster seeds {centroid: radius}
|
||||
|
||||
:param data: A list of data points to cluster [(x, y), (x, y), ...]
|
||||
:param seeds: Dictionary of cluster centroid positions and radius {centroid: radius}
|
||||
:return: Dictionary of final clusters found {centroid: member_list, ...} and updated seeds dictionary
|
||||
"""
|
||||
outliers = set()
|
||||
clusters = {}
|
||||
for seed in seeds: # Initialize empty clusters for each seed
|
||||
# If centroid is a data point, it is also a member of the cluster
|
||||
clusters[seed] = [seed] if seed in data else []
|
||||
|
||||
print(f'Updating cluster membership using cluster seeds, radius: ')
|
||||
for seed, radius in seeds.items():
|
||||
print(f'\t(({seed[0]:.4f}, {seed[1]:.4f}), {radius:.4f})')
|
||||
|
||||
# For each point, calculate the distance from all seeds
|
||||
for point in data:
|
||||
for seed, radius in seeds.items():
|
||||
if point is seed: # Do not check for distance(point, point)
|
||||
continue
|
||||
dist = math.dist(point, seed)
|
||||
if dist <= radius: # If the distance from any cluster is within range, add point to the cluster
|
||||
# This print statement is noisy, but it can be uncommented to see output for each new cluster member
|
||||
# print(f'{point} added to cluster {seed}\n\tDistance ({dist}) is within radius ({radius})')
|
||||
# Take union of point and cluster data
|
||||
clusters.update({seed: list(set(clusters[seed]) | set([point]))})
|
||||
|
||||
# Initialize outliers using difference between sets
|
||||
outliers = set(data) - (set(chain(*clusters.values())) | set(clusters.keys()))
|
||||
print(f'Outliers present: {outliers}')
|
||||
return clusters, seeds
|
||||
|
||||
|
||||
def show_clusters(data, seeds, plot, show=True):
|
||||
"""
|
||||
Shows clusters using matplotlib
|
||||
|
||||
:param data: Data points to draw on the scatter plot
|
||||
:param seeds: Cluster seed dictionary {centroid: radius, ...}
|
||||
:param plot: The subplot to plot data on
|
||||
:param show: Toggles displaying a window for the plot.
|
||||
Allows two plots to be drawn on the same subplot and then shown together using a subsequent call to plt.show()
|
||||
"""
|
||||
dataX, dataY = zip(*data)
|
||||
plot.set_aspect(1. / plot.get_data_ratio())
|
||||
|
||||
plot.scatter(dataX, dataY, c='k')
|
||||
# Draw circles for clusters
|
||||
cs = []
|
||||
while len(cs) < context.clusters: # Ensure we have enough colors to display all clusters
|
||||
cs.extend(['b', 'g', 'r', 'c', 'm', 'y', 'k'])
|
||||
for seed, radius, c in zip(seeds.keys(), seeds.values(), cs):
|
||||
plot.scatter(seed[0], seed[1], color=c)
|
||||
circle = plt.Circle(seed, radius, alpha=0.25, color=c)
|
||||
plot.add_patch(circle)
|
||||
|
||||
plot.grid()
|
||||
if show:
|
||||
print(f'Close window to update centroid positions and re-cluster data...')
|
||||
plt.show()
|
||||
|
||||
|
||||
def print_cluster_info(initial_clusters, seeds, centroid_diff):
|
||||
"""
|
||||
Outputs some information on clusters after each iteration
|
||||
|
||||
:param initial_clusters: The clusters as they were before reclustering
|
||||
:param seeds: The new seeds dictionary {centroid: radius, ...}
|
||||
:param centroid_diff: List of difference in centroid positions for each cluster
|
||||
"""
|
||||
for initial_point, initial_radius, updated, radius, dist in\
|
||||
zip(initial_clusters.keys(), initial_clusters.values(), seeds.keys(), seeds.values(), centroid_diff):
|
||||
print(f'Initial cluster at ({initial_point[0]:.4f}, {initial_point[1]:.4f}) '
|
||||
f'moved to ({updated[0]:.4f}, {updated[1]:.4f})'
|
||||
f'\n\tTotal shift: {dist:.4f}'
|
||||
f'\n\tFinal radius: {radius:.4f}')
|
||||
if initial_radius != radius:
|
||||
print(f'\tInitial radius: {initial_radius:.4f}')
|
||||
|
||||
|
||||
################################################################################
|
||||
# Main
|
||||
################################################################################
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
def main(args: List[str]):
|
||||
parser = init_parser()
|
||||
global context
|
||||
context = parser.parse_args(args[1:])
|
||||
if context.file: # If a file was provided, use that data instead
|
||||
context.data = [literal_eval(line.rstrip()) for line in context.file]
|
||||
context.data = [(float(x), float(y)) for x, y in context.data]
|
||||
elif context.random: # If random flag was set, randomly generate some data
|
||||
print("TODO: Randomly generate data")
|
||||
context.data = random_data()
|
||||
|
||||
print(
|
||||
f'Finding K-means clusters for given data {context.data}\n'
|
||||
f'\tUsing {context.clusters} clusters, {context.shift} max centroid shift, and {context.loops} iterations'
|
||||
)
|
||||
|
||||
seeds = {}
|
||||
if context.seeds: # Enforce CLUSTER_COUNT matching initial number of seeds
|
||||
context.clusters = len(context.seeds)
|
||||
seeds = update_clusters(dict.fromkeys(context.seeds, 0))
|
||||
else: # Select 2 random seeds once, before we enter clustering loop
|
||||
seeds = select_seeds(context.data)
|
||||
|
||||
# Save a copy of the initial clusters to show comparison at the end
|
||||
initial_clusters = seeds.copy()
|
||||
for loop in range(0, context.loops):
|
||||
print(f'\nClustering iteration {loop}')
|
||||
plt.title(f'Cluster iteration {loop}')
|
||||
# Check distance from all points to seed
|
||||
clusters, seeds = cluster_data(context.data, seeds)
|
||||
if loop > 0: # The initial graph has no centroid shift to print
|
||||
# If we are on any iteration beyond the first, print updated cluster information
|
||||
# + The first iteration shows initial data, since it has no updated data yet
|
||||
print_cluster_info(prev_centroids, seeds, centroid_diff)
|
||||
if context.verbose:
|
||||
print(f'Cluster members:')
|
||||
for member in [f'{np.round(cent, 4)}: {members}' for cent, members in clusters.items()]:
|
||||
print(member)
|
||||
elif loop == 0 and not context.silent:
|
||||
# If we are on the first iteration, show the initial data provided through CLI
|
||||
print(
|
||||
f'Showing initial data with {context.clusters} clusters '
|
||||
f'given seed points {round_points(seeds.keys())}'
|
||||
)
|
||||
|
||||
# Show the plot for every iteration if it is not suppressed by the CLI --silent flag
|
||||
if not context.silent:
|
||||
show_clusters(context.data, seeds, plt.subplot())
|
||||
|
||||
# Update centroids for new cluster data
|
||||
prev_centroids = seeds.copy()
|
||||
seeds = update_clusters(seeds, clusters)
|
||||
print(
|
||||
f'\nUpdated clusters ({round_points(prev_centroids.keys())}) '
|
||||
f'with new centroids {round_points(seeds.keys())}'
|
||||
)
|
||||
|
||||
# Find the difference in position for all centroids using their previous and current positions
|
||||
centroid_diff = [round(math.dist(prev, curr), 4) for prev, curr in
|
||||
list(zip(prev_centroids.keys(), seeds.keys()))]
|
||||
print(f'New centroids {round_points(seeds.keys())} shifted {centroid_diff} respectively')
|
||||
|
||||
# If any centroid has moved more than context.shift, the clusters are not stable
|
||||
stable = not any((diff > context.shift for diff in centroid_diff))
|
||||
if stable: # If centroid shift is not > context.shift, centroids have not changed
|
||||
break # Stop re-clustering process and show final result
|
||||
|
||||
print("\n\nShowing final cluster result...")
|
||||
centroid_diff = [round(math.dist(prev, curr), 4) for prev, curr in
|
||||
list(zip(initial_clusters.keys(), seeds.keys()))]
|
||||
print_cluster_info(initial_clusters, seeds, centroid_diff)
|
||||
|
||||
# If the clusters reached a point where they were stable, show output to warn
|
||||
if stable:
|
||||
print(
|
||||
f'\nStopping...\n'
|
||||
f'Cluster centroids have not shifted at least {context.shift}, clusters are stable'
|
||||
)
|
||||
|
||||
if not context.silent:
|
||||
# Create a side-by-side subplot to compare first iteration with final clustering results
|
||||
print(f'Close window to exit...')
|
||||
f, arr = plt.subplots(1, 2)
|
||||
arr[0].set_title(f'Cluster {0} (Initial result)')
|
||||
show_clusters(context.data, initial_clusters, arr[0], False)
|
||||
arr[1].set_title(f'Cluster {loop} (Final result)')
|
||||
show_clusters(context.data, seeds, arr[1], False)
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
sys.exit(main(sys.argv))
|
|
@ -0,0 +1,2 @@
|
|||
matplotlib==3.5.0
|
||||
numpy==1.21.4
|
Binary file not shown.
After Width: | Height: | Size: 44 KiB |
|
@ -0,0 +1,65 @@
|
|||
Install required dependencies for matplotlib GUI frontend and all pip other packages for this project
|
||||
|
||||
```bash
|
||||
sudo apt install python3-tk
|
||||
python3.9 -m pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Given a set of tuple `(X,Y)` data points as `[(X, Y), .., (X, Y)]`, determine the
|
||||
best fitting line plot, and then apply this projection to predict the dependent `Y`
|
||||
value using an independent `GIVEN_X` value.
|
||||
|
||||
```bash
|
||||
python3.9 linear-regression.py -h
|
||||
usage: linear-regression.py [-h] [--silent] [--file [FILE_PATH]] [GIVEN_X] [X,Y ...]
|
||||
|
||||
Find most fitting line plot for given data points and predict value given some X
|
||||
|
||||
positional arguments:
|
||||
GIVEN_X Value for X for prediction using linear regression
|
||||
(default: '4.5')
|
||||
|
||||
X,Y A list of data points separated by spaces as: x,y x,y x,y ...
|
||||
(default: '[(1, 3), (2, 7), (3, 5), (4, 9), (5, 11), (6, 12), (7, 15)]')
|
||||
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
--silent When this flag is set, line plot visualization will not be shown
|
||||
(default: 'False')
|
||||
|
||||
--file [FILE_PATH], -f [FILE_PATH]
|
||||
Optionally provide file for data to be read from. Each point must be on it's own line with format x,y
|
||||
```
|
||||
|
||||
Running linear regression program
|
||||
```bash
|
||||
python3.9 linear-regression.py --file ./input.txt --silent
|
||||
Finding fitting line plot for given data [(1, 3), (2, 7), (3, 5), (4, 9), (5, 11), (6, 12), (7, 15)]
|
||||
points_avg: (5.117647058823529, 5.235294117647059)
|
||||
variance: (241.76470588235296, 193.05882352941177)
|
||||
sigma: (3.887196176892422, 3.4736402333270258)
|
||||
covariance: 0.8455882352941174
|
||||
correlation: 0.0626235432924427
|
||||
Our line Y = BX + A must pass through the point (5.117647058823529, 5.235294117647059)
|
||||
Y = (0.05596107055961069)X + 4.9489051094890515
|
||||
For X = 4.5, Y is predicted to be 5.200729927007299
|
||||
```
|
||||
|
||||
By default, the following linear regression is calculated and displayed
|
||||
```bash
|
||||
python3.9 linear-regression.py
|
||||
|
||||
|
||||
Finding fitting line plot for given data [(1, 3), (2, 7), (3, 5), (4, 9), (5, 11), (6, 12), (7, 15)]
|
||||
points_avg: (4.0, 8.857142857142858)
|
||||
variance: (28.0, 104.85714285714286)
|
||||
sigma: (2.160246899469287, 4.180453381654971)
|
||||
covariance: 8.666666666666666
|
||||
correlation: 0.9596775116832306
|
||||
Our line Y = BX + A must pass through the point (4.0, 8.857142857142858)
|
||||
Y = (1.8571428571428565)X + 1.4285714285714315
|
||||
For X = 4.5, Y is predicted to be 9.785714285714285
|
||||
```
|
||||
|
||||
![](screenshot.png)
|
|
@ -0,0 +1,17 @@
|
|||
1,2
|
||||
2,3
|
||||
2,2
|
||||
5,6
|
||||
6,7
|
||||
6,8
|
||||
7,11
|
||||
1,1
|
||||
2,6
|
||||
4,8
|
||||
6,1
|
||||
3,2
|
||||
15,5
|
||||
10,2
|
||||
2,10
|
||||
11,4
|
||||
4,11
|
|
@ -0,0 +1,198 @@
|
|||
################################################################################
|
||||
# Author: Shaun Reed #
|
||||
# About: Linear regression CLI #
|
||||
# Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 #
|
||||
################################################################################
|
||||
|
||||
from ast import literal_eval
|
||||
from matplotlib import pyplot as plt
|
||||
from typing import List
|
||||
import argparse
|
||||
import math
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
|
||||
################################################################################
|
||||
# Commandline Argument Parser
|
||||
################################################################################
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
def init_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Find most fitting line plot for given data points and predict value given some X',
|
||||
formatter_class=argparse.RawTextHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'given', metavar='GIVEN_X', type=float, nargs='?',
|
||||
help=
|
||||
'''Value for X for prediction using linear regression
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=4.5
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'data', metavar='X,Y', type=point, nargs='*',
|
||||
help=
|
||||
'''A list of data points separated by spaces as: x,y x,y x,y ...
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=[(1, 3), (2, 7), (3, 5), (4, 9), (5, 11), (6, 12), (7, 15)]
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--silent', action='store_true',
|
||||
help=
|
||||
'''When this flag is set, line plot visualization will not be shown
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=False
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--file', '-f', metavar='FILE_PATH', nargs='?', type=open,
|
||||
help=
|
||||
'''Optionally provide file for data to be read from. Each point must be on it\'s own line with format x,y
|
||||
''',
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def point(arg):
|
||||
"""
|
||||
Helper function for parsing x,y points provided through argparse CLI
|
||||
|
||||
:param arg: A single argument passed to an option or positional argument
|
||||
:return: A tuple (x, y) representing a data point
|
||||
"""
|
||||
try:
|
||||
x, y = literal_eval(arg)
|
||||
return x, y
|
||||
except:
|
||||
raise argparse.ArgumentTypeError("Please provide data points in x,y format")
|
||||
|
||||
|
||||
################################################################################
|
||||
# Linear Regression Calculation
|
||||
################################################################################
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
def points_average(data):
|
||||
"""
|
||||
Finds average (x, y) for points in data list [(x, y), (x, y), ...]
|
||||
Used for updating cluster centroid positions
|
||||
|
||||
:param data: List [(x, y), (x, y), ...]
|
||||
:return: An average (x, y) position for the list of points
|
||||
"""
|
||||
x, y = 0, 0
|
||||
for pair in data:
|
||||
x += pair[0]
|
||||
y += pair[1]
|
||||
x = float(x / len(data))
|
||||
y = float(y / len(data))
|
||||
return x, y
|
||||
|
||||
|
||||
def points_variance(data, points_avg):
|
||||
"""
|
||||
Find variance for a series of data points
|
||||
|
||||
:param data: List of data points [(x, y), (x, y), ...]
|
||||
:param points_avg: Average (x, y) position for the list of points in data
|
||||
:return: Variance of X and Y for the data set as a tuple (x, y)
|
||||
"""
|
||||
x, y = 0, 0
|
||||
for point in data:
|
||||
x += math.pow((point[0] - points_avg[0]), 2)
|
||||
y += math.pow((point[1] - points_avg[1]), 2)
|
||||
return x, y
|
||||
|
||||
|
||||
def points_covariance(data, points_avg):
|
||||
"""
|
||||
Find covariance between X, Y within the data set
|
||||
|
||||
:param data: List of data points [(x, y), (x, y), ...]
|
||||
:param points_avg: Tuple of average X, Y for data set list
|
||||
:return: Single float value representing covariance
|
||||
"""
|
||||
cov = 0
|
||||
for point in data:
|
||||
cov += (point[0] - points_avg[0]) * (point[1] - points_avg[1])
|
||||
return float(cov / (len(data) - 1))
|
||||
|
||||
|
||||
def show_regression(data, beta, alpha):
|
||||
"""
|
||||
Shows the linear regression in the matplotlib subplot
|
||||
Line drawn with Y = BX + A
|
||||
|
||||
:param data: Data to show on the scatter plot
|
||||
:param beta: Value for B in the line equation
|
||||
:param alpha: Value for A in the line equation
|
||||
"""
|
||||
dataX, dataY = zip(*data)
|
||||
scaleX = np.linspace(min(dataX) - 1, max(dataX) + 1, 100)
|
||||
scaleY = beta * scaleX + alpha
|
||||
plt.plot(scaleX, scaleY, c='g')
|
||||
plt.scatter(dataX, dataY, c='k')
|
||||
print(f'For X = {context.given}, Y is predicted to be {beta * context.given + alpha} ')
|
||||
plt.scatter(context.given, beta * context.given + alpha, c='#e6e600')
|
||||
plt.show()
|
||||
|
||||
|
||||
################################################################################
|
||||
# Main
|
||||
################################################################################
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
def main(args: List[str]):
|
||||
parser = init_parser()
|
||||
global context
|
||||
context = parser.parse_args(args[1:])
|
||||
print(f'Finding fitting line plot for given data {context.data}')
|
||||
if context.file: # If a file was provided, use that data instead
|
||||
context.data = [literal_eval(line.rstrip()) for line in context.file]
|
||||
context.data = [(float(x), float(y)) for x, y in context.data]
|
||||
|
||||
# Find the average for the data X and Y points
|
||||
data_avg = points_average(context.data)
|
||||
print(f'points_avg: {data_avg}')
|
||||
|
||||
# Find the variance for the data X and Y points
|
||||
data_variance = points_variance(context.data, data_avg)
|
||||
print(f'variance: {data_variance}')
|
||||
|
||||
# Find the standard deviations for X and Y values
|
||||
data_sigma = (math.sqrt(float(data_variance[0] / (len(context.data) - 1))),
|
||||
math.sqrt(float(data_variance[1] / (len(context.data) - 1))))
|
||||
print(f'sigma: {data_sigma}')
|
||||
|
||||
# Find the covariance between X, Y within data set
|
||||
data_covariance = points_covariance(context.data, data_avg)
|
||||
print(f'covariance: {data_covariance}')
|
||||
|
||||
# Find correlation between X, Y within data set
|
||||
data_correlation = (1.0/math.prod(data_sigma)) * data_covariance
|
||||
print(f'correlation: {data_correlation}')
|
||||
|
||||
# Find equation for linear regression for the given data set
|
||||
print(f'Our line Y = BX + A must pass through the point {data_avg}')
|
||||
data_beta = data_correlation * float(data_sigma[1] / data_sigma[0])
|
||||
data_alpha = data_avg[1] - data_beta * data_avg[0]
|
||||
print(f'Y = ({data_beta})X + {data_alpha}')
|
||||
|
||||
# Show the final graph produced by linear regression calculations
|
||||
# + Predicts the Y value, given the X value provided through the CLI
|
||||
if not context.silent:
|
||||
show_regression(context.data, data_beta, data_alpha)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
sys.exit(main(sys.argv))
|
Binary file not shown.
After Width: | Height: | Size: 30 KiB |
|
@ -0,0 +1,119 @@
|
|||
Install required dependencies for matplotlib GUI frontend and all pip other packages for this project
|
||||
|
||||
```bash
|
||||
sudo apt install python3-tk
|
||||
python3.9 -m pip install -r requirements.txt
|
||||
```
|
||||
|
||||
CLI tool to determine most probably path of Hidden Markov Model given an observation sequence of emissions.
|
||||
|
||||
Given an observation sequence of emissions, find the most probable path of traversal for a Hidden Markov Model.
|
||||
Since this is just an example of HMM, a graph can be automatically generated by specifying only the node count.
|
||||
Edges and weights connecting the nodes will be randomly assigned.
|
||||
If required, an input graph can be provided through the JSON configuration option.
|
||||
See provided examples of JSON input files for more detail on options available.
|
||||
|
||||
```bash
|
||||
python3.9 markov-model.py -h
|
||||
|
||||
|
||||
usage: markov-model.py [-h] [--nodes [GRAPH_NODE_COUNT]] [--edges [GRAPH_EDGE_COUNT]] [--show-all] [--interactive] [--silent]
|
||||
[--file [FILE_PATH]]
|
||||
[OBSERVATION_SEQUENCE ...]
|
||||
|
||||
Calculates most probable path of HMM given an observation sequence
|
||||
|
||||
positional arguments:
|
||||
OBSERVATION_SEQUENCE An observation sequence to calculate the most probable path
|
||||
(default: '['A', 'B', 'D', 'C']')
|
||||
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
--nodes [GRAPH_NODE_COUNT], -n [GRAPH_NODE_COUNT]
|
||||
The total number of node states in the HMM graph
|
||||
(default: '4')
|
||||
|
||||
--edges [GRAPH_EDGE_COUNT], -e [GRAPH_EDGE_COUNT]
|
||||
The total number of edges in the HMM graph
|
||||
(default: '8')
|
||||
|
||||
--show-all When this flag is set, all path probabilities and their calculations will be output
|
||||
(default: 'False')
|
||||
|
||||
--interactive Allow taking input to update matrices with triple (row, col, value)
|
||||
(default: 'False')
|
||||
|
||||
--silent When this flag is set, final graph will not be shown
|
||||
(default: 'False')
|
||||
|
||||
--file [FILE_PATH], -f [FILE_PATH]
|
||||
Optionally provide file for data to be read from. Each point must be on it's own line with format x,y
|
||||
```
|
||||
|
||||
Running HMM with a graph using 4 nodes, 8 edges, and random transition / emission matrices
|
||||
Sometimes there can be a sequence with no possible path due to a constrained transition matrix
|
||||
Sometimes there can be a sequence with no possible path due to a limited emission matrix
|
||||
|
||||
```bash
|
||||
python3.9 markov-model.py --nodes 4 --edges 8 --show-all A B D C G --silent
|
||||
|
||||
|
||||
1->3: 0.89
|
||||
1->0: 0.6
|
||||
3->3: 0.81
|
||||
3->1: 0.29
|
||||
0->2: 0.67
|
||||
0->1: 0.89
|
||||
2->0: 0.12
|
||||
2->1: 0.41
|
||||
Calculating (0, 2, 1, 0, 2): (0.98 * 0.67) * (0.74 * 0.41) * (0.22 * 0.60) * (0.22 * 0.67) * 0.36 = 0.001395
|
||||
Calculating (0, 2, 1, 3, 3): (0.98 * 0.67) * (0.74 * 0.41) * (0.22 * 0.89) * (0.11 * 0.81) * 0.52 = 0.001807
|
||||
Finding most probable path for given observation sequence: ['A', 'B', 'D', 'C', 'G']
|
||||
Total nodes in graph: 4
|
||||
Total edges in graph: 8
|
||||
Number of sequences: 5
|
||||
Interactive mode: False
|
||||
Emitting nodes: {'A': [0, 2], 'B': [1, 2], 'C': [0, 2, 3], 'D': [1, 2], 'G': [0, 2, 3]}
|
||||
Transition matrix:
|
||||
[[0. 0.89 0.67 0. ]
|
||||
[0.6 0. 0. 0.89]
|
||||
[0.12 0.41 0. 0. ]
|
||||
[0. 0.29 0. 0.81]]
|
||||
Emission matrix:
|
||||
[[ 0.98 0. 0.22 0. 0.11]
|
||||
[ 0. 0.1 -0. 0.22 0. ]
|
||||
[ 0.67 0.74 0.46 0.62 0.36]
|
||||
[-0. 0. 0.11 0. 0.52]]
|
||||
Final paths sorted by probability:
|
||||
(0, 2, 1, 3, 3) has probability: 0.001807
|
||||
(0, 2, 1, 0, 2) has probability: 0.001395
|
||||
```
|
||||
|
||||
By default, a random Hidden Markov Model and visualization will be generated
|
||||
|
||||
```bash
|
||||
python3.9 markov-model.py
|
||||
|
||||
|
||||
Finding most probable path for given observation sequence: ['A', 'B', 'D', 'C']
|
||||
Total nodes in graph: 4
|
||||
Total edges in graph: 8
|
||||
Number of sequences: 4
|
||||
Interactive mode: False
|
||||
Emitting nodes: {'A': [0, 2, 3], 'B': [1, 2, 3], 'C': [0, 3], 'D': [1, 2]}
|
||||
Transition matrix:
|
||||
[[0. 0. 0.31 0. ]
|
||||
[0.55 0.25 0. 0. ]
|
||||
[0.79 0.47 0. 0.12]
|
||||
[0.92 0. 0.81 0. ]]
|
||||
Emission matrix:
|
||||
[[0.45 0. 0.4 0. ]
|
||||
[0. 0.89 0. 0.51]
|
||||
[0.12 0.24 0. 0.78]
|
||||
[0.08 0.42 0.96 0. ]]
|
||||
(0, 2, 1, 0) has the highest probability of 0.00176553432
|
||||
```
|
||||
|
||||
![](screenshot.png)
|
||||
|
|
@ -0,0 +1,16 @@
|
|||
{
|
||||
"sequence": ["A", "B", "D", "C"],
|
||||
"nodes": 4,
|
||||
"edges": 10,
|
||||
"interactive": true,
|
||||
"transition_matrix": [
|
||||
[0.2, 0.7, 0.0],
|
||||
[0.0, 0.0, 0.7],
|
||||
[0.2, 0.3, 0.0]
|
||||
],
|
||||
"emission_matrix": [
|
||||
[0.7, 0.3, 0.0, 0.0],
|
||||
[0.2, 0.2, 0.4, 0.2],
|
||||
[0.0, 0.0, 0.2, 0.8]
|
||||
]
|
||||
}
|
|
@ -0,0 +1,481 @@
|
|||
################################################################################
|
||||
# Author: Shaun Reed #
|
||||
# About: HMM implementation to calculate most probable path for sequence #
|
||||
# Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 #
|
||||
################################################################################
|
||||
|
||||
from matplotlib import pyplot as plt
|
||||
from typing import List
|
||||
import argparse
|
||||
import itertools
|
||||
import json
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
import random
|
||||
import sys
|
||||
|
||||
|
||||
################################################################################
|
||||
# CLI Argument Parser
|
||||
################################################################################
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
def init_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Calculates most probable path of HMM given an observation sequence',
|
||||
formatter_class=argparse.RawTextHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'sequence', metavar='OBSERVATION_SEQUENCE', nargs='*',
|
||||
help=
|
||||
'''An observation sequence to calculate the most probable path
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=['A', 'B', 'D', 'C']
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--nodes', '-n', metavar='GRAPH_NODE_COUNT',type=int, nargs='?',
|
||||
help=
|
||||
'''The total number of node states in the HMM graph
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=4
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--edges', '-e', metavar='GRAPH_EDGE_COUNT',type=int, nargs='?',
|
||||
help=
|
||||
'''The total number of edges in the HMM graph
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=8
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--show-all', action='store_true',
|
||||
help=
|
||||
'''When this flag is set, all path probabilities and their calculations will be output
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=False
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--interactive', action='store_true',
|
||||
help=
|
||||
'''Allow taking input to update matrices with triple (row, col, value)
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=False
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--silent', action='store_true',
|
||||
help=
|
||||
'''When this flag is set, final graph will not be shown
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=False
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--file', '-f', metavar='FILE_PATH', nargs='?', type=open,
|
||||
help=
|
||||
'''Optionally provide file for data to be read from. Each point must be on it\'s own line with format x,y
|
||||
''',
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
################################################################################
|
||||
# Helper Functions
|
||||
################################################################################
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
def parse_file():
|
||||
"""
|
||||
Validates keys in JSON file and updates CLI input context
|
||||
|
||||
Initializes a MultiDiGraph object using input data model_graph
|
||||
Initializes a matrix of emission probabilities emission_matrix
|
||||
:return: model_graph, emission_matrix
|
||||
"""
|
||||
# Load the JSON input file, validate keys
|
||||
file_data = json.load(context['file'])
|
||||
for key in file_data:
|
||||
if key == "transition_matrix" or key == "emission_matrix":
|
||||
continue
|
||||
assert key in context
|
||||
# Update the CLI context with JSON input
|
||||
context.update(file_data)
|
||||
|
||||
model_graph = nx.MultiDiGraph(build_graph(np.array(file_data['transition_matrix'])))
|
||||
emission_matrix = np.array(file_data['emission_matrix'])
|
||||
return model_graph, emission_matrix
|
||||
|
||||
|
||||
def random_emission():
|
||||
"""
|
||||
Initialize an emission matrix size SxE
|
||||
Where S is number of states and E is number of emissions
|
||||
|
||||
:return: Initialized emission_matrix
|
||||
"""
|
||||
emission_matrix = np.zeros((context["nodes"], len(set(context["sequence"]))))
|
||||
shape = emission_matrix.shape
|
||||
for row in range(0, shape[0]):
|
||||
for col in range(0, shape[1]):
|
||||
# Let random number swing below 0 to increase chance of nodes not emitting
|
||||
emit_prob = round(random.uniform(-0.25, 1.0), 2)
|
||||
emit_prob = 0.0 if emit_prob < 0.0 else emit_prob
|
||||
emission_matrix[row][col] = emit_prob
|
||||
return emission_matrix
|
||||
|
||||
|
||||
def random_graph(nodes, edges=2):
|
||||
"""
|
||||
Create a random graph represented as a list [(from_node, to_node, {'weight': edge_weight}), ...]
|
||||
Networkx can use this list in constructors for graph objects
|
||||
|
||||
:param nodes: The number of nodes in the graph
|
||||
:param edges: The number of edges connecting nodes in the graph
|
||||
:return: A list [(from_node, to_node, {'weight': edge_weight}), ...]
|
||||
"""
|
||||
# By default, make twice as many edges as there are nodes
|
||||
edges *= nodes if edges == 2 else 1
|
||||
r_graph = []
|
||||
for x in range(0, edges):
|
||||
while True:
|
||||
new_edge = (
|
||||
random.randint(0, nodes - 1), # Randomly select a from_node index
|
||||
random.randint(0, nodes - 1), # Randomly select a to_node index
|
||||
{
|
||||
# Randomly set an edge weight between from_node and to_node
|
||||
'weight':
|
||||
round(random.uniform(0.0, 1.0), 2)
|
||||
}
|
||||
)
|
||||
if not any((new_edge[0], new_edge[1]) == (a, b) for a, b, w in r_graph):
|
||||
break
|
||||
r_graph.append(new_edge)
|
||||
return r_graph
|
||||
|
||||
|
||||
def build_graph(t_matrix):
|
||||
"""
|
||||
Converts a transition matrix to a list of edges and weights
|
||||
This list can then be passed to NetworkX graph constructors
|
||||
|
||||
:param t_matrix: The transition matrix to build the graph from
|
||||
:return: A list [(from_node, to_node, {'weight': edge_weight}), ...]
|
||||
"""
|
||||
n_graph = []
|
||||
shape = t_matrix.shape
|
||||
for row in range(0, shape[0]):
|
||||
for col in range(0, shape[1]):
|
||||
if t_matrix[row][col] <= 0.0:
|
||||
continue
|
||||
new_edge = (row, col, {'weight': t_matrix[row][col]})
|
||||
n_graph.append(new_edge)
|
||||
return n_graph
|
||||
|
||||
|
||||
def transition_matrix(graph: nx.MultiDiGraph):
|
||||
"""
|
||||
Build a transition matrix from a Networkx MultiDiGraph object
|
||||
|
||||
:param graph: An initialized MultiDiGraph graph object
|
||||
:return: An initialized transition matrix with shape (NODE_COUNT, NODE_COUNT)
|
||||
"""
|
||||
# Initialize a matrix of zeros with size ExE where E is total number of states (nodes)
|
||||
t_matrix = np.zeros((context["nodes"], context["nodes"]))
|
||||
# Build matrices from iterating over the graph
|
||||
for a, b, weight in graph.edges(data='weight'):
|
||||
t_matrix[a][b] = weight
|
||||
if context["show_all"]:
|
||||
print(f'{a}->{b}: {weight}')
|
||||
return t_matrix
|
||||
|
||||
|
||||
def make_emission_dict(emission_matrix):
|
||||
"""
|
||||
Create a dictionary that maps to index keys for each emission. emission_keys
|
||||
Create a dictionary that maps to a list of emitting nodes for each emission. emission_dict
|
||||
|
||||
:param emission_matrix: An emission_matrix size NxE
|
||||
Where N is the number of nodes (states) and E is the number of emissions
|
||||
:return: emission_dict, emission_keys
|
||||
"""
|
||||
emission_dict = {}
|
||||
for emission in sorted(set(context["sequence"])):
|
||||
emission_dict[emission] = []
|
||||
emission_keys = dict.fromkeys(emission_dict.keys())
|
||||
|
||||
# Initialize emission_dict to store a list of all nodes that emit the key value
|
||||
shape = emission_matrix.shape
|
||||
i = 0
|
||||
for key in emission_dict.keys():
|
||||
for row in range(0, shape[0]):
|
||||
if emission_matrix[row][i] > 0:
|
||||
emission_dict[key].append(row)
|
||||
emission_keys[key] = i
|
||||
i += 1
|
||||
return emission_dict, emission_keys
|
||||
|
||||
|
||||
def int_input(prompt):
|
||||
"""
|
||||
Forces integer input. Retries and warns if bogus values are entered.
|
||||
|
||||
:param prompt: The initial prompt message to show for input
|
||||
:return: The integer input by the user at runtime
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
value = int(input(prompt))
|
||||
break
|
||||
except ValueError:
|
||||
print("Please enter an integer value")
|
||||
return value
|
||||
|
||||
|
||||
def triple_input(matrix):
|
||||
"""
|
||||
Takes 3 integer input, validates it makes sense for the selected matrix
|
||||
If row or column selected is outside the limits of the matrix, warn and retry input until valid
|
||||
|
||||
:param matrix: The matrix to use for input validation
|
||||
:return: The validated input
|
||||
"""
|
||||
row = int_input("Row: ")
|
||||
col = int_input("Col: ")
|
||||
value = int_input("Value: ")
|
||||
row, col = check_input(row, col, matrix)
|
||||
return row, col, value
|
||||
|
||||
|
||||
def check_input(row, col, matrix):
|
||||
"""
|
||||
Checks that row, col input values are within the bounds of matrix
|
||||
If valid values are passed initially, no additional prompts are made.
|
||||
Retries input until valid values are input.
|
||||
|
||||
:param row: The row index input by the user
|
||||
:param col: The col index input by the user
|
||||
:param matrix: The matrix to use for input validation
|
||||
:return: The validated input for row and column index
|
||||
"""
|
||||
while row > matrix.shape[0] - 1:
|
||||
print(f'{row} is too large for transition matrix of shape {matrix.shape}')
|
||||
row = int_input("Row : ")
|
||||
while col > matrix.shape[1] - 1:
|
||||
print(f'{col} is too large for transition matrix of shape {matrix.shape}')
|
||||
col = int_input("Col: ")
|
||||
return row, col
|
||||
|
||||
|
||||
################################################################################
|
||||
# Hidden Markov Model
|
||||
################################################################################
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
def find_paths(emission_dict, t_matrix):
|
||||
"""
|
||||
Find all possible paths for an emission sequence
|
||||
|
||||
:param emission_dict: A dictionary of emitters for emissions {emission_1: [0, 1], emission_2: [1, 3], ...}
|
||||
:param t_matrix: A transition matrix size NxN where N is the total number of nodes in the graph
|
||||
:return: A list of validated paths for the emission given through the CLI
|
||||
"""
|
||||
paths = []
|
||||
for emission in context["sequence"]:
|
||||
paths.append(emission_dict[emission])
|
||||
# Take the cartesian product of the emitting nodes to get a list of all possible paths
|
||||
# + Return only the paths which have > 0 probability given the transition matrix
|
||||
return validate_paths(list(itertools.product(*paths)), t_matrix)
|
||||
|
||||
|
||||
def validate_paths(path_list: list, t_matrix):
|
||||
"""
|
||||
Checks all paths in path_list [[0, 1, 2, 3], [0, 1, 1, 2], ...]
|
||||
If the transition matrix t_matrix indicates any node in a path can't reach the next node in path
|
||||
The path can't happen given our graph. Remove it from the list of paths.
|
||||
|
||||
:param path_list: A list of paths to validate
|
||||
:param t_matrix: A transition matrix size NxN where N is the total number of nodes in the graph
|
||||
:return: A list of validated paths [[0, 1, 2, 3], [0, 1, 1, 2], ...]
|
||||
"""
|
||||
valid_paths = []
|
||||
for path in path_list:
|
||||
valid = True
|
||||
for step in range(0, len(path) - 1):
|
||||
current_node = path[step]
|
||||
# If the transition matrix indicates that the chance to move to next step in path is 0
|
||||
if t_matrix[current_node][path[step+1]] <= 0.0:
|
||||
# The path cannot possibly happen. Don't consider it.
|
||||
valid = False
|
||||
break
|
||||
if valid:
|
||||
# We reached the end of our path without hitting a dead-end. The path is valid.
|
||||
valid_paths.append(path)
|
||||
return valid_paths
|
||||
|
||||
|
||||
def find_probability(emission_matrix, t_matrix, emission_keys, valid_paths):
|
||||
"""
|
||||
Find probability of paths occurring given our current HMM
|
||||
Store result in a dictionary {probability: (0, 1, 2, 3), probability_2: (0, 0, 1, 2)}
|
||||
|
||||
:param emission_matrix: A matrix of emission probabilities NxE where N is the emitting node and E is the emission
|
||||
:param t_matrix: A transition matrix NxN where N is the total number of nodes in the graph
|
||||
:param emission_keys: A dictionary mapping to index values for emissions as E in the emission_matrix
|
||||
:param valid_paths: A list of valid paths to calculate probability given an emission sequence
|
||||
:return: A dictionary of {prob: path}; For example {probability: (0, 1, 2, 3), probability_2: (0, 0, 1, 2)}
|
||||
"""
|
||||
path_prob = {}
|
||||
seq = list(context["sequence"])
|
||||
for path in valid_paths:
|
||||
calculations = f'Calculating {path}: '
|
||||
prob = 1.0
|
||||
for step in range(0, len(path) - 1):
|
||||
current_node = path[step]
|
||||
next_node = path[step + 1]
|
||||
emission_index = emission_keys[seq[step]]
|
||||
emission_prob = emission_matrix[current_node][emission_index]
|
||||
transition_prob = t_matrix[current_node][next_node]
|
||||
calculations += f'({emission_prob:.2f} * {transition_prob:.2f}) * '
|
||||
prob *= emission_prob * transition_prob
|
||||
emission_index = emission_keys[seq[step + 1]]
|
||||
final_emission_prob = emission_matrix[next_node][emission_index]
|
||||
prob *= final_emission_prob
|
||||
calculations += f'{final_emission_prob:.2f} = {prob:.6f}'
|
||||
if prob > 0.0: # Don't keep paths which aren't possible due to emission sequence
|
||||
path_prob[prob] = path
|
||||
if context["show_all"]:
|
||||
print(calculations)
|
||||
return path_prob
|
||||
|
||||
|
||||
def run_problem(transition_matrix, emission_matrix):
|
||||
"""
|
||||
Runs the HMM calculations given a transition_matrix and emission_matrix
|
||||
|
||||
:param transition_matrix: A matrix size NxN where N is the total number of nodes and values represent probability
|
||||
:param emission_matrix: A matrix size NxE where N is total nodes and E is total number of emissions
|
||||
:return: A dictionary of {probability: path} sorted by probability key from in descending order
|
||||
"""
|
||||
# Dictionary of {emission: [emitter, ...]}
|
||||
emission_dict, emission_keys = make_emission_dict(emission_matrix)
|
||||
valid_paths = find_paths(emission_dict, transition_matrix)
|
||||
path_prob = find_probability(emission_matrix, transition_matrix, emission_keys, valid_paths)
|
||||
result = {key: path_prob[key] for key in dict.fromkeys(sorted(path_prob.keys(), reverse=True))}
|
||||
print(f'Finding most probable path for given observation sequence: {context["sequence"]}\n'
|
||||
f'\tTotal nodes in graph: {context["nodes"]}\n'
|
||||
f'\tTotal edges in graph: {context["edges"]}\n'
|
||||
f'\tNumber of sequences: {len(set(context["sequence"]))}\n'
|
||||
f'\tInteractive mode: {context["interactive"]}\n'
|
||||
f'\tEmitting nodes: {emission_dict}\n'
|
||||
f'Transition matrix: \n{transition_matrix}\n'
|
||||
f'Emission matrix: \n{emission_matrix}'
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
def show_result(result):
|
||||
"""
|
||||
Prints results from running the HMM calculations
|
||||
|
||||
:param result: The result dictionary returned by run_problem()
|
||||
"""
|
||||
if len(result) == 0:
|
||||
print(f'No valid paths found for sequence {context["sequence"]}')
|
||||
elif context["show_all"]:
|
||||
print(f'Final paths sorted by probability:')
|
||||
[print(f'{path} has probability:\t {prob:.6f}') for prob, path in result.items()]
|
||||
else:
|
||||
print(f'{list(result.values())[0]} has the highest probability of {list(result.keys())[0]}')
|
||||
|
||||
|
||||
def draw_graph(graph):
|
||||
"""
|
||||
Draws the model_graph for the current HMM using NetworkX
|
||||
|
||||
:param graph: An initialized MultiDiGraph object with edge weights representing transition probability
|
||||
"""
|
||||
# Get a dictionary of {node: position} for drawing the graph
|
||||
dict_pos = nx.spring_layout(graph)
|
||||
nx.draw(
|
||||
graph, dict_pos,
|
||||
with_labels=True,
|
||||
node_size=[x * 200 for x in dict(graph.degree).values()],
|
||||
alpha=1,
|
||||
arrowstyle="->",
|
||||
arrowsize=25,
|
||||
)
|
||||
# TODO: Fix parallel path weight display
|
||||
nx.draw_networkx_edge_labels(graph, dict_pos)
|
||||
plt.show()
|
||||
|
||||
|
||||
################################################################################
|
||||
# Main
|
||||
################################################################################
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
def main(args: List[str]):
|
||||
parser = init_parser()
|
||||
global context
|
||||
context = vars(parser.parse_args(args[1:]))
|
||||
if context["file"]: # If a file was provided, use that data instead
|
||||
model_graph, emission_matrix = parse_file()
|
||||
else:
|
||||
# If no file was provided, build a random graph with the requested number of nodes and edges
|
||||
model_graph = nx.MultiDiGraph(random_graph(context["nodes"], context["edges"]))
|
||||
# Create a random emission matrix
|
||||
emission_matrix = random_emission()
|
||||
|
||||
t_matrix = transition_matrix(model_graph)
|
||||
result = run_problem(t_matrix, emission_matrix)
|
||||
show_result(result)
|
||||
|
||||
# Draw the graph for a visual example to go with output
|
||||
if not context["silent"]:
|
||||
draw_graph(model_graph)
|
||||
|
||||
# Unless we are in interactive mode, we're finished. Return.
|
||||
if not context["interactive"]:
|
||||
return
|
||||
|
||||
# Prompt to update the transition or emission matrix, then rerun problem with new values
|
||||
print("Choose matrix to update:\n\t1. Transition\n\t2. Emission\n\t3. Both", end='')
|
||||
choice = input()
|
||||
if choice == '1':
|
||||
row, col, value = triple_input(t_matrix)
|
||||
t_matrix[row][col] = value
|
||||
elif choice == '2':
|
||||
row, col, value = triple_input(emission_matrix)
|
||||
emission_matrix[row][col] = value
|
||||
elif choice == '3':
|
||||
print('\nInput for updating transition matrix')
|
||||
row, col, value = triple_input(t_matrix)
|
||||
t_matrix[row][col] = value
|
||||
print('\nInput for updating emission matrix')
|
||||
row, col, value = triple_input(emission_matrix)
|
||||
emission_matrix[row][col] = value
|
||||
result = run_problem(t_matrix, emission_matrix)
|
||||
show_result(result)
|
||||
|
||||
# Draw the graph for a visual example to go with output
|
||||
if not context["silent"]:
|
||||
model_graph = nx.MultiDiGraph(build_graph(np.array(t_matrix)))
|
||||
draw_graph(model_graph)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
sys.exit(main(sys.argv))
|
|
@ -0,0 +1,3 @@
|
|||
matplotlib==3.5.0
|
||||
networkx==2.6.3
|
||||
numpy==1.21.4
|
Binary file not shown.
After Width: | Height: | Size: 52 KiB |
|
@ -0,0 +1,151 @@
|
|||
sepal_length,sepal_width,petal_length,petal_width,species
|
||||
5.1,3.5,1.4,0.2,Iris-setosa
|
||||
4.9,3,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.3,0.2,Iris-setosa
|
||||
4.6,3.1,1.5,0.2,Iris-setosa
|
||||
5,3.6,1.4,0.2,Iris-setosa
|
||||
5.4,3.9,1.7,0.4,Iris-setosa
|
||||
4.6,3.4,1.4,0.3,Iris-setosa
|
||||
5,3.4,1.5,0.2,Iris-setosa
|
||||
4.4,2.9,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5.4,3.7,1.5,0.2,Iris-setosa
|
||||
4.8,3.4,1.6,0.2,Iris-setosa
|
||||
4.8,3,1.4,0.1,Iris-setosa
|
||||
4.3,3,1.1,0.1,Iris-setosa
|
||||
5.8,4,1.2,0.2,Iris-setosa
|
||||
5.7,4.4,1.5,0.4,Iris-setosa
|
||||
5.4,3.9,1.3,0.4,Iris-setosa
|
||||
5.1,3.5,1.4,0.3,Iris-setosa
|
||||
5.7,3.8,1.7,0.3,Iris-setosa
|
||||
5.1,3.8,1.5,0.3,Iris-setosa
|
||||
5.4,3.4,1.7,0.2,Iris-setosa
|
||||
5.1,3.7,1.5,0.4,Iris-setosa
|
||||
4.6,3.6,1,0.2,Iris-setosa
|
||||
5.1,3.3,1.7,0.5,Iris-setosa
|
||||
4.8,3.4,1.9,0.2,Iris-setosa
|
||||
5,3,1.6,0.2,Iris-setosa
|
||||
5,3.4,1.6,0.4,Iris-setosa
|
||||
5.2,3.5,1.5,0.2,Iris-setosa
|
||||
5.2,3.4,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.6,0.2,Iris-setosa
|
||||
4.8,3.1,1.6,0.2,Iris-setosa
|
||||
5.4,3.4,1.5,0.4,Iris-setosa
|
||||
5.2,4.1,1.5,0.1,Iris-setosa
|
||||
5.5,4.2,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5,3.2,1.2,0.2,Iris-setosa
|
||||
5.5,3.5,1.3,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
4.4,3,1.3,0.2,Iris-setosa
|
||||
5.1,3.4,1.5,0.2,Iris-setosa
|
||||
5,3.5,1.3,0.3,Iris-setosa
|
||||
4.5,2.3,1.3,0.3,Iris-setosa
|
||||
4.4,3.2,1.3,0.2,Iris-setosa
|
||||
5,3.5,1.6,0.6,Iris-setosa
|
||||
5.1,3.8,1.9,0.4,Iris-setosa
|
||||
4.8,3,1.4,0.3,Iris-setosa
|
||||
5.1,3.8,1.6,0.2,Iris-setosa
|
||||
4.6,3.2,1.4,0.2,Iris-setosa
|
||||
5.3,3.7,1.5,0.2,Iris-setosa
|
||||
5,3.3,1.4,0.2,Iris-setosa
|
||||
7,3.2,4.7,1.4,Iris-versicolor
|
||||
6.4,3.2,4.5,1.5,Iris-versicolor
|
||||
6.9,3.1,4.9,1.5,Iris-versicolor
|
||||
5.5,2.3,4,1.3,Iris-versicolor
|
||||
6.5,2.8,4.6,1.5,Iris-versicolor
|
||||
5.7,2.8,4.5,1.3,Iris-versicolor
|
||||
6.3,3.3,4.7,1.6,Iris-versicolor
|
||||
4.9,2.4,3.3,1,Iris-versicolor
|
||||
6.6,2.9,4.6,1.3,Iris-versicolor
|
||||
5.2,2.7,3.9,1.4,Iris-versicolor
|
||||
5,2,3.5,1,Iris-versicolor
|
||||
5.9,3,4.2,1.5,Iris-versicolor
|
||||
6,2.2,4,1,Iris-versicolor
|
||||
6.1,2.9,4.7,1.4,Iris-versicolor
|
||||
5.6,2.9,3.6,1.3,Iris-versicolor
|
||||
6.7,3.1,4.4,1.4,Iris-versicolor
|
||||
5.6,3,4.5,1.5,Iris-versicolor
|
||||
5.8,2.7,4.1,1,Iris-versicolor
|
||||
6.2,2.2,4.5,1.5,Iris-versicolor
|
||||
5.6,2.5,3.9,1.1,Iris-versicolor
|
||||
5.9,3.2,4.8,1.8,Iris-versicolor
|
||||
6.1,2.8,4,1.3,Iris-versicolor
|
||||
6.3,2.5,4.9,1.5,Iris-versicolor
|
||||
6.1,2.8,4.7,1.2,Iris-versicolor
|
||||
6.4,2.9,4.3,1.3,Iris-versicolor
|
||||
6.6,3,4.4,1.4,Iris-versicolor
|
||||
6.8,2.8,4.8,1.4,Iris-versicolor
|
||||
6.7,3,5,1.7,Iris-versicolor
|
||||
6,2.9,4.5,1.5,Iris-versicolor
|
||||
5.7,2.6,3.5,1,Iris-versicolor
|
||||
5.5,2.4,3.8,1.1,Iris-versicolor
|
||||
5.5,2.4,3.7,1,Iris-versicolor
|
||||
5.8,2.7,3.9,1.2,Iris-versicolor
|
||||
6,2.7,5.1,1.6,Iris-versicolor
|
||||
5.4,3,4.5,1.5,Iris-versicolor
|
||||
6,3.4,4.5,1.6,Iris-versicolor
|
||||
6.7,3.1,4.7,1.5,Iris-versicolor
|
||||
6.3,2.3,4.4,1.3,Iris-versicolor
|
||||
5.6,3,4.1,1.3,Iris-versicolor
|
||||
5.5,2.5,4,1.3,Iris-versicolor
|
||||
5.5,2.6,4.4,1.2,Iris-versicolor
|
||||
6.1,3,4.6,1.4,Iris-versicolor
|
||||
5.8,2.6,4,1.2,Iris-versicolor
|
||||
5,2.3,3.3,1,Iris-versicolor
|
||||
5.6,2.7,4.2,1.3,Iris-versicolor
|
||||
5.7,3,4.2,1.2,Iris-versicolor
|
||||
5.7,2.9,4.2,1.3,Iris-versicolor
|
||||
6.2,2.9,4.3,1.3,Iris-versicolor
|
||||
5.1,2.5,3,1.1,Iris-versicolor
|
||||
5.7,2.8,4.1,1.3,Iris-versicolor
|
||||
6.3,3.3,6,2.5,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
7.1,3,5.9,2.1,Iris-virginica
|
||||
6.3,2.9,5.6,1.8,Iris-virginica
|
||||
6.5,3,5.8,2.2,Iris-virginica
|
||||
7.6,3,6.6,2.1,Iris-virginica
|
||||
4.9,2.5,4.5,1.7,Iris-virginica
|
||||
7.3,2.9,6.3,1.8,Iris-virginica
|
||||
6.7,2.5,5.8,1.8,Iris-virginica
|
||||
7.2,3.6,6.1,2.5,Iris-virginica
|
||||
6.5,3.2,5.1,2,Iris-virginica
|
||||
6.4,2.7,5.3,1.9,Iris-virginica
|
||||
6.8,3,5.5,2.1,Iris-virginica
|
||||
5.7,2.5,5,2,Iris-virginica
|
||||
5.8,2.8,5.1,2.4,Iris-virginica
|
||||
6.4,3.2,5.3,2.3,Iris-virginica
|
||||
6.5,3,5.5,1.8,Iris-virginica
|
||||
7.7,3.8,6.7,2.2,Iris-virginica
|
||||
7.7,2.6,6.9,2.3,Iris-virginica
|
||||
6,2.2,5,1.5,Iris-virginica
|
||||
6.9,3.2,5.7,2.3,Iris-virginica
|
||||
5.6,2.8,4.9,2,Iris-virginica
|
||||
7.7,2.8,6.7,2,Iris-virginica
|
||||
6.3,2.7,4.9,1.8,Iris-virginica
|
||||
6.7,3.3,5.7,2.1,Iris-virginica
|
||||
7.2,3.2,6,1.8,Iris-virginica
|
||||
6.2,2.8,4.8,1.8,Iris-virginica
|
||||
6.1,3,4.9,1.8,Iris-virginica
|
||||
6.4,2.8,5.6,2.1,Iris-virginica
|
||||
7.2,3,5.8,1.6,Iris-virginica
|
||||
7.4,2.8,6.1,1.9,Iris-virginica
|
||||
7.9,3.8,6.4,2,Iris-virginica
|
||||
6.4,2.8,5.6,2.2,Iris-virginica
|
||||
6.3,2.8,5.1,1.5,Iris-virginica
|
||||
6.1,2.6,5.6,1.4,Iris-virginica
|
||||
7.7,3,6.1,2.3,Iris-virginica
|
||||
6.3,3.4,5.6,2.4,Iris-virginica
|
||||
6.4,3.1,5.5,1.8,Iris-virginica
|
||||
6,3,4.8,1.8,Iris-virginica
|
||||
6.9,3.1,5.4,2.1,Iris-virginica
|
||||
6.7,3.1,5.6,2.4,Iris-virginica
|
||||
6.9,3.1,5.1,2.3,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
6.8,3.2,5.9,2.3,Iris-virginica
|
||||
6.7,3.3,5.7,2.5,Iris-virginica
|
||||
6.7,3,5.2,2.3,Iris-virginica
|
||||
6.3,2.5,5,1.9,Iris-virginica
|
||||
6.5,3,5.2,2,Iris-virginica
|
||||
6.2,3.4,5.4,2.3,Iris-virginica
|
||||
5.9,3,5.1,1.8,Iris-virginica
|
|
|
@ -0,0 +1,200 @@
|
|||
Install required dependencies for matplotlib GUI frontend and all pip other packages for this project
|
||||
|
||||
```bash
|
||||
sudo apt install python3-tk
|
||||
python3.9 -m pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Neural network implementation using Python CLI to dynamically generate a resizable network
|
||||
and then run a given number of learning cycles on the provided data set.
|
||||
As an example, the IRIS dataset is used to classify flower types using petal measurements.
|
||||
Input layer perceptron count can be adjusted with `INPUTS` positional parameter
|
||||
Hidden layer perceptron count can be adjusted with `PERCEPTRONS` positional parameter
|
||||
Output layer perceptron count can be adjusted with `OUTPUTS` positional parameter
|
||||
Hidden layers can be added or removed using`--hidden-layers` option setting
|
||||
Node bias can be initialized randomly or with provided data.
|
||||
Perceptron edge weight bias can be initialized randomly or with provided data.
|
||||
Threshold for perceptron fire can be initialized randomly or with provided data.
|
||||
|
||||
Setup instructions and output of `neural-network.py -h`-
|
||||
```bash
|
||||
python3.9 neural-network.py -h
|
||||
|
||||
|
||||
usage: neural-network.py [-h] [--hidden-layers [HIDDEN_LAYERS]] [--cycles [CYCLES]] [--learn-rate [LEARNING_RATE]]
|
||||
[--bias [INITIAL_BIAS]] [--weight [INITIAL_EDGE_WEIGHTS]] [--error-threshold [ERROR_THRESHOLD]]
|
||||
[--fire-threshold [FIRE_THRESHOLD]] [--spacing [LAYER_SPACING]] [--horizontal] [--silent] [--verbose]
|
||||
[--file [file_path]]
|
||||
[INPUTS] [PERCEPTRONS] [OUTPUTS]
|
||||
|
||||
Neural network implementation
|
||||
|
||||
positional arguments:
|
||||
INPUTS Number of inputs for the neural network
|
||||
(default: '3')
|
||||
|
||||
PERCEPTRONS Number of perceptrons in each hidden layer
|
||||
(default: '8')
|
||||
|
||||
OUTPUTS Number of outputs for the neural network
|
||||
(default: '3')
|
||||
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
--hidden-layers [HIDDEN_LAYERS], -l [HIDDEN_LAYERS]
|
||||
Number of hidden layers
|
||||
(default: '1')
|
||||
|
||||
--cycles [CYCLES], -c [CYCLES]
|
||||
Number of cycles to run through the network
|
||||
(default: '3')
|
||||
|
||||
--learn-rate [LEARNING_RATE]
|
||||
Learning rate to use for the network.
|
||||
Must be within range of 0.0 < rate <= 1.0
|
||||
(default: '0.25')
|
||||
|
||||
--bias [INITIAL_BIAS], -b [INITIAL_BIAS]
|
||||
The initial bias to use for perceptrons within the network.
|
||||
Must be within range of -1.0 <= bias <= 1.0
|
||||
If value is unset, bias will be initialized randomly
|
||||
|
||||
--weight [INITIAL_EDGE_WEIGHTS], -w [INITIAL_EDGE_WEIGHTS]
|
||||
The initial edge weight to use for node connections in the network
|
||||
If value is unset, edge weights will be initialized randomly
|
||||
|
||||
--error-threshold [ERROR_THRESHOLD], --error [ERROR_THRESHOLD]
|
||||
The acceptable error threshold to use for training the network.
|
||||
(default: '0.5')
|
||||
|
||||
--fire-threshold [FIRE_THRESHOLD], --fire [FIRE_THRESHOLD]
|
||||
The fire threshold for perceptrons in the network.
|
||||
If a perceptron's cumulative inputs reach this value, the perceptron fires
|
||||
(default: '0.25')
|
||||
|
||||
--spacing [LAYER_SPACING]
|
||||
Distance between origin of network layers within visualization
|
||||
(default: '2.0')
|
||||
|
||||
--horizontal, --flip The network visualization will flow left-to-right
|
||||
(default: 'False')
|
||||
|
||||
--silent Do not show the network visualization, only print output to console
|
||||
(default: 'False')
|
||||
|
||||
--verbose, -v When this flag is set, error rate and change in weight will be output for each calculation
|
||||
(default: 'False')
|
||||
|
||||
--file [file_path], -f [file_path]
|
||||
Optionally provide a json file to configure any option available through the cli
|
||||
json keys match --long version of each option, where --long-split option key is "long_split" in json
|
||||
```
|
||||
|
||||
Input and output layers are sized by the length of a single input sequence and the number of possible label classifications.
|
||||
If the length of an input sequence does not match the number of input nodes requested, a warning will show.
|
||||
If the length of possible label classifications does not match the number of output nodes requested, a warning will show.
|
||||
In both cases, the program corrects the node count to match the input data / labels, and not the requested node count.
|
||||
|
||||
The total number of output labels provided must match the total number of the number of input sequences.
|
||||
|
||||
Running NN program uses IRIS data set by default.
|
||||
Warnings will be shown if input and output node count is changed without providing new input.
|
||||
```bash
|
||||
python3.9 neural-network.py --file input.json --silent
|
||||
|
||||
|
||||
Warning: Input sequences each contain 3 entries but 5 input nodes were requested.
|
||||
Using 3 input nodes instead of 5
|
||||
Warning: Output labels contain 3 possible classifications but 8 output were nodes requested.
|
||||
Using 3 output nodes instead of 8
|
||||
Creating a single layer neural network:
|
||||
Total input nodes: 3
|
||||
Number of perceptrons in each hidden layer: 8
|
||||
Total output nodes: 3
|
||||
Number of hidden layers: 3
|
||||
Fire threshold: 0.25
|
||||
Error threshold: 0.5
|
||||
Learn rate: 0.25
|
||||
Initial bias: Random
|
||||
Initial edge weights: Random
|
||||
Network visualization settings:
|
||||
Graph visualization is enabled: False
|
||||
Graph visualization is horizontal: True
|
||||
Graph visualization is vertical: False
|
||||
Graph visualization layer spacing: 2.0
|
||||
Test data input count: 150
|
||||
inputs layer: [0, 1, 2]
|
||||
hidden layer: [[3, 4, 5, 6, 7, 8, 9, 10], [11, 12, 13, 14, 15, 16, 17, 18], [19, 20, 21, 22, 23, 24, 25, 26]]
|
||||
outputs layer: [27, 28, 29]
|
||||
[Cycle 1] Accuracy: 92.6667% [139 / 11]
|
||||
[Cycle 2] Accuracy: 95.3333% [286 / 14]
|
||||
[Cycle 3] Accuracy: 96.2222% [433 / 17]
|
||||
[Cycle 4] Accuracy: 96.6667% [580 / 20]
|
||||
[Cycle 5] Accuracy: 96.9333% [727 / 23]
|
||||
[Cycle 6] Accuracy: 97.1111% [874 / 26]
|
||||
[Cycle 7] Accuracy: 97.2381% [1021 / 29]
|
||||
[Cycle 8] Accuracy: 97.3333% [1168 / 32]
|
||||
[Cycle 9] Accuracy: 97.4074% [1315 / 35]
|
||||
[Cycle 10] Accuracy: 97.4667% [1462 / 38]
|
||||
|
||||
Correct: 1462 Wrong: 38 Total: 1500
|
||||
Cycle 1 accuracy: 92.6667% Cycle 10 accuracy: 97.4667%
|
||||
4.8% change over 10 cycles 0.48% average change per cycle
|
||||
```
|
||||
|
||||
|
||||
Running NN program with garbage data in `input-test.json` to test resizing of input / output layers.
|
||||
A single input sequence is `[0, 1, 0, 1, 1, 1]` which is length of 6, so 6 input nodes are created.
|
||||
Within the output labels, there are 8 unique labels in the set, so 8 output nodes are created.
|
||||
The length a single label must match the number of output nodes.
|
||||
For 8 output nodes, the labels `[1, 0, 0, 0, 0, 0, 0, 0]` and `[0, 1, 0, 0, 0, 0, 0, 0]` are valid.
|
||||
|
||||
```bash
|
||||
python3.9 neural-network.py --file ./input-test.json --silent
|
||||
|
||||
|
||||
Warning: Output labels contain 8 possible classifications but 10 output were nodes requested.
|
||||
Using 8 output nodes instead of 10
|
||||
Creating a single layer neural network:
|
||||
Total input nodes: 6
|
||||
Number of perceptrons in each hidden layer: 8
|
||||
Total output nodes: 8
|
||||
Number of hidden layers: 3
|
||||
Fire threshold: 0.25
|
||||
Error threshold: 0.5
|
||||
Learn rate: 0.25
|
||||
Initial bias: Random
|
||||
Initial edge weights: Random
|
||||
Network visualization settings:
|
||||
Graph visualization is enabled: False
|
||||
Graph visualization is horizontal: True
|
||||
Graph visualization is vertical: False
|
||||
Graph visualization layer spacing: 2.0
|
||||
Test data input count: 14
|
||||
inputs layer: [0, 1, 2, 3, 4, 5]
|
||||
hidden layer: [[6, 7, 8, 9, 10, 11, 12, 13], [14, 15, 16, 17, 18, 19, 20, 21], [22, 23, 24, 25, 26, 27, 28, 29]]
|
||||
outputs layer: [30, 31, 32, 33, 34, 35, 36, 37]
|
||||
[Cycle 1] Accuracy: 35.7143% [5 / 9]
|
||||
[Cycle 2] Accuracy: 39.2857% [11 / 17]
|
||||
[Cycle 3] Accuracy: 40.4762% [17 / 25]
|
||||
[Cycle 4] Accuracy: 41.0714% [23 / 33]
|
||||
[Cycle 5] Accuracy: 41.4286% [29 / 41]
|
||||
[Cycle 6] Accuracy: 41.6667% [35 / 49]
|
||||
[Cycle 7] Accuracy: 41.8367% [41 / 57]
|
||||
[Cycle 8] Accuracy: 41.9643% [47 / 65]
|
||||
[Cycle 9] Accuracy: 42.0635% [53 / 73]
|
||||
[Cycle 10] Accuracy: 42.1429% [59 / 81]
|
||||
|
||||
Correct: 59 Wrong: 81 Total: 140
|
||||
Cycle 1 accuracy: 35.7143% Cycle 10 accuracy: 42.1429%
|
||||
6.4286% change over 10 cycles 0.6429% average change per cycle
|
||||
```
|
||||
|
||||
By default, the following network and visualization will be generated
|
||||
|
||||
```bash
|
||||
python3.9 neural-network.py
|
||||
# Output removed for GUI example
|
||||
```
|
||||
![](screenshot.png)
|
|
@ -0,0 +1,44 @@
|
|||
{
|
||||
"inputs": 6,
|
||||
"perceptrons": 8,
|
||||
"outputs": 10,
|
||||
"hidden_layers": 3,
|
||||
"learn_rate": 0.25,
|
||||
"fire_threshold": 0.25,
|
||||
"error_threshold": 0.5,
|
||||
"cycles": 10,
|
||||
"spacing": 2.0,
|
||||
"horizontal": true,
|
||||
"input_sequence": [
|
||||
[0, 1, 0, 1, 1, 1],
|
||||
[0, 0, 0, 0, 1, 1],
|
||||
[0, 1, 0, 1, 1, 1],
|
||||
[0, 1, 0, 1, 1, 1],
|
||||
[0, 1, 0, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[0, 1, 0, 1, 1, 1],
|
||||
[0, 1, 0, 1, 1, 1],
|
||||
[0, 1, 0, 1, 1, 1],
|
||||
[0, 1, 0, 1, 1, 1],
|
||||
[0, 1, 0, 1, 1, 1]
|
||||
],
|
||||
"label_sequence": [
|
||||
[1, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 1, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 1, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 1, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 1, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 1, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 0, 0, 0, 1],
|
||||
[0, 0, 0, 0, 0, 0, 0, 1]
|
||||
]
|
||||
}
|
|
@ -0,0 +1,12 @@
|
|||
{
|
||||
"inputs": 5,
|
||||
"perceptrons": 8,
|
||||
"outputs": 8,
|
||||
"hidden_layers": 3,
|
||||
"learn_rate": 0.25,
|
||||
"fire_threshold": 0.25,
|
||||
"error_threshold": 0.5,
|
||||
"cycles": 10,
|
||||
"spacing": 2.0,
|
||||
"horizontal": true
|
||||
}
|
|
@ -0,0 +1,649 @@
|
|||
################################################################################
|
||||
# Author: Shaun Reed #
|
||||
# About: ANN implementation with adjustable layers and layer lengths #
|
||||
# Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 #
|
||||
################################################################################
|
||||
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn.datasets import load_iris
|
||||
from typing import List
|
||||
import argparse
|
||||
import json
|
||||
import math
|
||||
import numpy as np
|
||||
import pandas as pd # Unused unless optional code is manually uncommented
|
||||
import random
|
||||
import sys
|
||||
import viznet as vn
|
||||
|
||||
|
||||
################################################################################
|
||||
# CLI Argument Parser
|
||||
################################################################################
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
def init_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Neural network implementation',
|
||||
formatter_class=argparse.RawTextHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'inputs', metavar='INPUTS', type=int, nargs='?',
|
||||
help=
|
||||
'''Number of inputs for the neural network
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=3
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'perceptrons', metavar='PERCEPTRONS', type=int, nargs='?',
|
||||
help=
|
||||
'''Number of perceptrons in each hidden layer
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=8
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'outputs', metavar='OUTPUTS', type=int, nargs='?',
|
||||
help=
|
||||
'''Number of outputs for the neural network
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=3
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--hidden-layers', '-l', metavar='HIDDEN_LAYERS', type=int, nargs='?',
|
||||
help=
|
||||
'''Number of hidden layers
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=1
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--cycles', '-c', metavar='CYCLES', type=int, nargs='?',
|
||||
help=
|
||||
'''Number of cycles to run through the network
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=3
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--learn-rate', metavar='LEARNING_RATE', type=float, nargs='?',
|
||||
help=
|
||||
'''Learning rate to use for the network.
|
||||
Must be within range of 0.0 < rate <= 1.0
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=0.25
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--bias', '-b', metavar='INITIAL_BIAS', type=float, nargs='?',
|
||||
help=
|
||||
'''The initial bias to use for perceptrons within the network.
|
||||
Must be within range of -1.0 <= bias <= 1.0
|
||||
If value is unset, bias will be initialized randomly
|
||||
''',
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--weight', '-w', metavar='INITIAL_EDGE_WEIGHTS', type=float, nargs='?',
|
||||
help=
|
||||
'''The initial edge weight to use for node connections in the network
|
||||
If value is unset, edge weights will be initialized randomly
|
||||
'''
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--error-threshold', '--error', metavar='ERROR_THRESHOLD', type=float, nargs='?',
|
||||
help=
|
||||
'''The acceptable error threshold to use for training the network.
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=0.5
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--fire-threshold', '--fire', metavar='FIRE_THRESHOLD', type=float, nargs='?',
|
||||
help=
|
||||
'''The fire threshold for perceptrons in the network.
|
||||
If a perceptron\'s cumulative inputs reach this value, the perceptron fires
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=0.25
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--spacing', metavar='LAYER_SPACING', type=float, nargs='?',
|
||||
help=
|
||||
'''Distance between origin of network layers within visualization
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=2.0
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--horizontal', '--flip', action='store_true',
|
||||
help=
|
||||
'''The network visualization will flow left-to-right
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=False
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--silent', action='store_true',
|
||||
help=
|
||||
'''Do not show the network visualization, only print output to console
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=False
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--verbose', '-v', action='store_true',
|
||||
help=
|
||||
'''When this flag is set, error rate and change in weight will be output for each calculation
|
||||
(default: '%(default)s')
|
||||
''',
|
||||
default=False
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--file', '-f', metavar='file_path', nargs='?', type=open,
|
||||
help=
|
||||
'''Optionally provide a json file to configure any option available through the cli
|
||||
json keys match --long version of each option, where --long-split option key is "long_split" in json
|
||||
''',
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
################################################################################
|
||||
# Neural Network
|
||||
################################################################################
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
def parse_file():
|
||||
"""
|
||||
Validates keys in JSON file and updates CLI input context
|
||||
|
||||
:return: (seq_input, seq_label) Initialized to input and label sequences in JSON file if present
|
||||
"""
|
||||
|
||||
# Load the JSON input file, validate keys
|
||||
file_data = json.load(context['file'])
|
||||
for key in file_data:
|
||||
if key == "input_sequence" or key == "label_sequence":
|
||||
continue
|
||||
assert key in context
|
||||
# Update the CLI context with JSON input
|
||||
context.update(file_data)
|
||||
|
||||
# If JSON file provided input and label sequences, load and return them
|
||||
seq_input = seq_label = None
|
||||
if 'input_sequence' in file_data:
|
||||
seq_input = np.array(file_data['input_sequence'])
|
||||
if 'label_sequence' in file_data:
|
||||
seq_label = np.array(file_data['label_sequence'])
|
||||
return seq_input, seq_label
|
||||
|
||||
|
||||
def network_layers():
|
||||
"""
|
||||
Initialize a dictionary of layers where each layer is a list of nodes: {'input': [0, 1, 2]}
|
||||
The hidden layer in this dictionary is a list of lists for each hidden layer: {'hidden': [[3, 4, 5], [6, 7, 8]]}
|
||||
|
||||
:return: A dictionary, as an example: {'input': [0, 1, 2], 'hidden': [[3, 4, 5], [6, 7, 8]], 'output': [9, 10, 11] }
|
||||
"""
|
||||
inputs = [i for i in range(context["inputs"])]
|
||||
offset = context["inputs"]
|
||||
|
||||
# For each hidden layer add the requested number of perceptrons
|
||||
hidden = [[] for x in range(context["hidden_layers"])]
|
||||
for x in range(context["hidden_layers"]):
|
||||
hidden[x] = [i for i in range(offset, context["perceptrons"] + offset)]
|
||||
offset += context["perceptrons"]
|
||||
|
||||
outputs = [i for i in range(offset, context["outputs"] + offset)]
|
||||
offset += context["outputs"]
|
||||
|
||||
layers = {"inputs": inputs, "hidden": hidden, "outputs": outputs}
|
||||
[print(f'{layer} layer: {layers[layer]}') for layer in layers]
|
||||
return layers
|
||||
|
||||
|
||||
def random_matrix(rows, cols, low=-1.0, high=1.0):
|
||||
""" Produce a random matrix of size ROWSxCOLS using LOW and HIGH as upper and lower bounds """
|
||||
return np.random.uniform(low, high, (rows, cols))
|
||||
|
||||
|
||||
def get_matrix_dict():
|
||||
"""
|
||||
Produces a dictionary that holds edge weight transition matrices for each layer of the network
|
||||
matrix_dict['input'] maps to a single 2D matrix
|
||||
|
||||
matrix_dict['hidden'] maps to a 3D matrix
|
||||
+ where matrix_dict['hidden'][0] is the 2D transition matrix for the first hidden layer
|
||||
|
||||
:return: A dictionary, as an example: {'input': [[...]], 'hidden': [[[...]], [[...]]], 'output': [[...]] }
|
||||
"""
|
||||
if context["weight"] is None:
|
||||
# Create matrices to represent edges and weights for each layer of the network
|
||||
input_matrix = random_matrix(context["inputs"], context["perceptrons"])
|
||||
hidden_matrices = [random_matrix(context["perceptrons"], context["perceptrons"])
|
||||
for x in range(context["hidden_layers"]-1)]
|
||||
output_matrix = random_matrix(context["perceptrons"], context["outputs"])
|
||||
else:
|
||||
# If an initial edge weight was specified, fill matrices with that value instead of generating randomly
|
||||
input_matrix = np.full((context["inputs"], context["perceptrons"]), context["weight"])
|
||||
hidden_matrices = [np.full((context["perceptrons"], context["perceptrons"]), context["weight"])
|
||||
for x in range(context["hidden_layers"]-1)]
|
||||
output_matrix = np.full((context["perceptrons"], context["outputs"]), context["weight"])
|
||||
|
||||
matrix_dict = {'input': input_matrix, 'hidden': np.array(hidden_matrices), 'output': output_matrix}
|
||||
return matrix_dict
|
||||
|
||||
|
||||
def get_bias_dict():
|
||||
"""
|
||||
Produces a dictionary that stores bias vectors for perceptrons in each layer of the network
|
||||
The hidden layer in this dictionary is a list of lists for bias in each hidden layer: {'hidden': [[...], [...]]}
|
||||
|
||||
:return: A dictionary, as an example: {'input': [0.5, 0.5], 'hidden': [[0.5, 0.5 0.5], ...], 'output': [...] }
|
||||
"""
|
||||
# If there was a bias provided, use it; Else use random perceptron bias
|
||||
bias = round(random.uniform(-1.0, 1.0), 2) if context["bias"] is None else context["bias"]
|
||||
# Create vectors to represent perceptron bias in each layer
|
||||
input_bias = [bias for x in range(0, context["inputs"])]
|
||||
hidden_bias = [[bias for x in range(0, context["perceptrons"])] for x in range(0, context["hidden_layers"])]
|
||||
output_bias = [bias for x in range(0, context["outputs"])]
|
||||
bias_dict = {'input': input_bias, 'hidden': hidden_bias, 'output': output_bias}
|
||||
return bias_dict
|
||||
|
||||
|
||||
def threshold_fire(input_sum):
|
||||
"""
|
||||
Applies step function using fire_threshold set by CLI to determine if perceptron is firing or not
|
||||
|
||||
:param input_sum: The sum of inputs for this perceptron
|
||||
:return: A list of outputs for each perceptron in the layer. If only the first fired: [1, 0, 0, 0]
|
||||
"""
|
||||
output = [1 if val > context["fire_threshold"] else 0 for val in input_sum.tolist()]
|
||||
return output
|
||||
|
||||
|
||||
def adjust_weight(matrix_dict, out_output, label):
|
||||
"""
|
||||
Back propagation for adjusting edge weights of nodes that produces incorrect output
|
||||
|
||||
:param matrix_dict: A dictionary of matrices for the network produces by get_matrix_dict()
|
||||
:param out_output: The actual output for this input sequence
|
||||
:param label: The desired result for this input sequence
|
||||
:return: A dictionary of transition matrices for the network with adjusted edge weights
|
||||
"""
|
||||
# Find erroneous indices
|
||||
bad_nodes = error_nodes(out_output, label)
|
||||
if len(bad_nodes) == 0:
|
||||
return matrix_dict
|
||||
|
||||
# Adjust the edge weights leading to the error nodes; Don't adjust correct nodes
|
||||
for layer, mat in reversed(matrix_dict.items()):
|
||||
if layer == 'output':
|
||||
for node in bad_nodes:
|
||||
for row in range(len(mat)):
|
||||
mod = context['learn_rate'] * (label[node] - out_output[node]) # * Input (???)
|
||||
if context['verbose']:
|
||||
print(f'Adjusting output weights at ({row}, {node}) with {mod}')
|
||||
mat[row][node] += mod
|
||||
|
||||
# In a fully connected neural network, all edges are updated if any output node is wrong
|
||||
# + Every node of every layer connects to every node in the next layer
|
||||
# + Any wrong node updates all edges in previous layers
|
||||
if layer == 'hidden':
|
||||
# If there are any hidden layers that do not connect to input or output layers directly
|
||||
if mat.size > 0:
|
||||
# For each hidden layer matrix, update all edge weights
|
||||
for i, hl_mat in enumerate(mat):
|
||||
for row in range(len(hl_mat)):
|
||||
mod = context['learn_rate']
|
||||
for col in range(len(hl_mat[row])):
|
||||
# print(f'Adjusting output weights at ({row}, {col}) with {mod}')
|
||||
mat[i][row][col] += context["learn_rate"]
|
||||
|
||||
if layer == 'input':
|
||||
for row in range(len(mat)):
|
||||
mod = context['learn_rate']
|
||||
for col in range(len(mat[row])):
|
||||
# print(f'Adjusting output weights at ({row}, {col}) with {mod}')
|
||||
mat[row][col] += mod
|
||||
return matrix_dict
|
||||
|
||||
|
||||
def error_rate(actual_output, label):
|
||||
"""
|
||||
Determines error rate for this input sequence
|
||||
Error rate is later used to determine if edge weights should be adjusted
|
||||
|
||||
:param actual_output: The actual output for this input sequence
|
||||
:param label: The desired output for this input sequence
|
||||
:return: The error rate for the sequence
|
||||
"""
|
||||
error_sum = 0
|
||||
for n, output in enumerate(actual_output):
|
||||
err = label[n] - output
|
||||
error_sum += math.pow(err, 2)
|
||||
err = math.sqrt(error_sum)
|
||||
return err
|
||||
|
||||
|
||||
def error_nodes(out_output, label):
|
||||
"""
|
||||
Find which output nodes are incorrect
|
||||
|
||||
:param out_output: Actual output for this input sequence
|
||||
:param label: The desired output for this input sequence
|
||||
:return: A list of node indices that produced the wrong output for this sequence
|
||||
"""
|
||||
# Loop through each output, check if it matches the label; If it doesn't add index to returned list
|
||||
return [i for i, output in enumerate(out_output) if output != label[i]]
|
||||
|
||||
|
||||
def layer_pass(weight_matrix, input_vector, bias_vector):
|
||||
"""
|
||||
Passes input from layer A to layer B
|
||||
|
||||
:param weight_matrix: Transition matrix of edge weights where perceptrons from layer A are rows and B are columns
|
||||
:param input_vector: An input vector that represents the output from A to B
|
||||
:param bias_vector: The bias vector for perceptrons in layer B
|
||||
:return: Final output from the layer, after step function is applied in threshold_fire()
|
||||
"""
|
||||
layer_edge_weights = np.array(weight_matrix).T
|
||||
prev_output = np.atleast_2d(input_vector).T
|
||||
this_layer_input = layer_edge_weights.dot(prev_output).T.flatten()
|
||||
this_layer_input += np.array(bias_vector)
|
||||
|
||||
return threshold_fire(this_layer_input)
|
||||
|
||||
|
||||
def train_network(seq_input, seq_label, bias_dict, matrix_dict):
|
||||
"""
|
||||
Performs forward pass through network, moving through the number of cycles requested by the CLI
|
||||
|
||||
:param seq_input: Sequence of inputs to feed into the network
|
||||
:param seq_label: Sequence of labels to verify network output and indicate error
|
||||
:param bias_dict: Dictionary of bias vectors for the perceptrons in each layer
|
||||
:param matrix_dict: Dictionary of transition matrices for the edge weights between layers in the network
|
||||
:return: Information gathered from training the network used to output final accuracy
|
||||
"""
|
||||
# Info dictionary used to track accuracy
|
||||
info = {'correct': 0, 'wrong': 0, 'total': len(seq_input) * context["cycles"], 'first_acc': 0}
|
||||
|
||||
# A list of error rates for each cycle
|
||||
# + These aren't used much for the program, but they hold nice data to explore while debugging
|
||||
cycle_errors = []
|
||||
cycle_outputs = [[] for x in range(context["cycles"])]
|
||||
for cycle_index in range(1, context["cycles"] + 1):
|
||||
# print(f'\nCycle number {cycle_index}')
|
||||
for seq_index in range(0, len(seq_input)):
|
||||
# One list for storing the outputs of each layer, and another to store inputs
|
||||
seq_outputs = []
|
||||
|
||||
# Input layer -> Hidden layer
|
||||
# Apply input perceptron bias vector to initial inputs of the input layer
|
||||
in_input = np.array(np.array(seq_input[seq_index]) + np.array(bias_dict['input']))
|
||||
# Find output of the input layer
|
||||
in_output = threshold_fire(in_input)
|
||||
seq_outputs.append(in_output)
|
||||
|
||||
# Find output for first hidden layer
|
||||
hl_output = layer_pass(matrix_dict["input"], seq_outputs[-1], bias_dict['hidden'][0])
|
||||
seq_outputs.append(hl_output)
|
||||
|
||||
# For each hidden layer find inputs and outputs, up until the last hidden layer
|
||||
# + Start at 1 since we already have the output from first hidden layer
|
||||
for layer_index in range(1, context["hidden_layers"]):
|
||||
# Hidden layer -> Hidden layer
|
||||
edges = matrix_dict['hidden'][layer_index - 1]
|
||||
bias = bias_dict['hidden'][layer_index - 1]
|
||||
# Find output for hidden layer N
|
||||
hl_output = layer_pass(edges, seq_outputs[-1], bias)
|
||||
seq_outputs.append(hl_output)
|
||||
|
||||
# Hidden layer -> Output layer
|
||||
# Find output for output layer
|
||||
out_output = layer_pass(matrix_dict['output'], seq_outputs[-1], bias_dict['output'])
|
||||
seq_outputs.append(out_output)
|
||||
|
||||
# Forward pass through network finished
|
||||
# Find error rate for this input sequence
|
||||
err = error_rate(out_output, seq_label[seq_index])
|
||||
|
||||
if context['verbose'] and err > 0:
|
||||
print(f'Error rate for sequence {seq_index} cycle {cycle_index}: {err}')
|
||||
# If error rate for this sequence is above threshold, adjust weighted edges
|
||||
if err > context["error_threshold"]:
|
||||
matrix_dict = adjust_weight(matrix_dict, out_output, seq_label[seq_index])
|
||||
|
||||
# Track correctness of sequences and cycles
|
||||
if err == 0:
|
||||
info['correct'] += 1
|
||||
else:
|
||||
info['wrong'] += 1
|
||||
|
||||
# Append the result to the cycle_outputs list for this cycle; -1 for 0 index array offset
|
||||
# cycle_outputs contains a list for each cycle. Each list contains N outputs for N input sequences
|
||||
cycle_outputs[cycle_index - 1].append(out_output)
|
||||
cycle_errors.append(err)
|
||||
|
||||
# Move to next learning cycle in for loop
|
||||
info_total_temp = info['correct'] + info['wrong']
|
||||
if cycle_index == 1:
|
||||
info['first_acc'] = round(100.0 * float(info["correct"] / info_total_temp), 4)
|
||||
print(
|
||||
f'[Cycle {cycle_index}] \tAccuracy: {100.0 * float(info["correct"] / info_total_temp):.4f}% \t'
|
||||
f'[{info["correct"]} / {info["wrong"]}]'
|
||||
)
|
||||
if context["verbose"]:
|
||||
for layer in matrix_dict:
|
||||
print(
|
||||
f'Network {layer} layer: \n{matrix_dict[layer]}\n'
|
||||
# Bias vector doesn't change, so it's not very interesting output per-cycle
|
||||
# f'{layer} bias vector: {bias_dict[layer]}'
|
||||
)
|
||||
|
||||
info['cycle_error'] = cycle_errors
|
||||
return info
|
||||
|
||||
|
||||
def draw_graph(net_plot, net_layers, draw_horizontal=None, spacing=None):
|
||||
"""
|
||||
This is the only function where viznet is used. Viznet is a module to visualize network graphs using matplotlib.
|
||||
https://viznet.readthedocs.io/en/latest/core.html
|
||||
https://viznet.readthedocs.io/en/latest/examples.html#examples
|
||||
|
||||
To draw the graph, we need to at least specify the following information for-each layer in the network -
|
||||
1. The number of nodes in the layer
|
||||
2. The type of nodes that make up each layer (https://viznet.readthedocs.io/en/latest/viznet.theme.html)
|
||||
3. The distance between the center (origin) of each layer
|
||||
With this we can use viznet helper functions to draw network
|
||||
|
||||
:param net_plot: A matplotlib subplot to draw the network on
|
||||
:param net_layers: A dictionary of layers that make up the network nodes
|
||||
:param draw_horizontal: True if graph should be drawn so direction flows left->right; False for bottom->top
|
||||
:param spacing: The distance between the center of origin for each layer in the network
|
||||
"""
|
||||
# If no spacing was provided to the call, use spacing set by CLI
|
||||
spacing = context["spacing"] if spacing is None else spacing
|
||||
# If no draw mode was provided to the call, use mode set by CLI
|
||||
draw_horizontal = context["horizontal"] if draw_horizontal is None else draw_horizontal
|
||||
|
||||
# 1. Number of nodes in each layer is provided by dictionary: len(net_layers['input'])
|
||||
|
||||
# 2. Define node type to draw for each layer in the network (default ['nn.input', 'nn.hidden', nn.output])
|
||||
node_types = ['nn.input'] + ['nn.hidden'] * context["hidden_layers"] + ['nn.output']
|
||||
|
||||
# 3. Use spacing distance to create list of X positions with equal distance apart (default [0, 1.5, 3.0])
|
||||
# 1.5 * 0 = 0; 1.5 * 1 = 1.5; 1.5 * 2 = 3.0; 1.5 * 3 = 4.5; etc
|
||||
layer_pos = spacing * np.arange(context["hidden_layers"] + 2)
|
||||
|
||||
# Create a sequence of Node objects using viznet helper function node_sequence
|
||||
# + Allows defining a NodeBrush for-each node, which is used by the library to style nodes
|
||||
node_sequence = []
|
||||
layer_index = 0
|
||||
for layer in net_layers:
|
||||
# If we are on the hidden layers, iterate through each
|
||||
if layer == 'hidden':
|
||||
for hl in net_layers[layer]:
|
||||
brush = vn.NodeBrush(node_types[layer_index], net_plot)
|
||||
ctr = (layer_pos[layer_index], 0) if draw_horizontal else (0, layer_pos[layer_index])
|
||||
node_sequence.append(vn.node_sequence(
|
||||
brush, len(hl),
|
||||
center=ctr, space=(0, 1) if draw_horizontal else (1, 0))
|
||||
)
|
||||
layer_index += 1
|
||||
else:
|
||||
brush = vn.NodeBrush(node_types[layer_index], net_plot)
|
||||
ctr = (layer_pos[layer_index], 0) if draw_horizontal else (0, layer_pos[layer_index])
|
||||
node_sequence.append(vn.node_sequence(
|
||||
brush, len(net_layers[layer]),
|
||||
center=ctr, space=(0, 1) if draw_horizontal else (1, 0))
|
||||
)
|
||||
layer_index += 1
|
||||
|
||||
# Define an EdgeBrush that draws arrows between nodes using matplotlib axes
|
||||
edge_brush = vn.EdgeBrush('-->', net_plot)
|
||||
for start, end in zip(node_sequence[:-1], node_sequence[1:]):
|
||||
# Connect each node in `start` layer to each node in `end` layer
|
||||
for start_node in start:
|
||||
for end_node in end:
|
||||
# Apply the EdgeBrush using matplotlib axes and node edge tuple
|
||||
edge_brush >> (start_node, end_node)
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
################################################################################
|
||||
# Main
|
||||
################################################################################
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
def main(args: List[str]):
|
||||
parser = init_parser()
|
||||
global context
|
||||
context = vars(parser.parse_args(args[1:]))
|
||||
seq_input = None
|
||||
seq_label = None
|
||||
if context['file']:
|
||||
seq_input, seq_label = parse_file()
|
||||
|
||||
if seq_input is None or seq_label is None:
|
||||
# You cannot provide input or label sequences via the CLI
|
||||
# If no file was provided with data, use iris dataset as example data
|
||||
|
||||
# Use sklearn.dataset to grab example data
|
||||
iris = load_iris()
|
||||
# iris_data = iris.data[:, (0, 1, 2, 3)]
|
||||
iris_data = iris.data[:, (0, 2, 3)]
|
||||
# iris_data = iris.data[:, (2, 3)]
|
||||
iris_label = iris.target
|
||||
|
||||
# Or read a CSV manually using pandas
|
||||
# iris = pd.read_csv('/home/kapper/Code/School/CS/AI/Assignment/two/IRIS.csv').to_dict()
|
||||
# iris_data = [[x, y] for x, y in zip(iris['petal_length'].values(), iris['petal_width'].values())]
|
||||
# iris_data = [[x, y, z] for x, y, z in zip(iris['petal_length'].values(),
|
||||
# iris['petal_width'].values(),
|
||||
# iris['sepal_length'].values())]
|
||||
# iris_label = [x for x in iris['species'].values()]
|
||||
|
||||
# To change the number of output nodes, we need to adjust the number of labels for classification
|
||||
# iris_data = iris.data[0:99, (0, 2, 3)]
|
||||
# iris_label = [l for l in iris_label if l != 2]
|
||||
|
||||
# Convert labels to: 0-> [1, 0, 0]; 1-> [0, 1, 0]; 2->[0, 0, 1]
|
||||
seq_input = iris_data
|
||||
seq_label = []
|
||||
for i, label in enumerate(set(iris_label)):
|
||||
same = [s for s in iris_label if s == label]
|
||||
for l in same:
|
||||
new_label = np.zeros(len(set(iris_label))).tolist()
|
||||
new_label[i] = 1
|
||||
seq_label.append(new_label)
|
||||
|
||||
# Assert that the provided learning rate is valid
|
||||
assert(0.0 < context['learn_rate'] <= 1.0)
|
||||
|
||||
# This check ensures that the number of inputs match the number of input nodes
|
||||
# + And does the same for output nodes with possible classifications
|
||||
# + But, this removes the ability to grow / shrink input / output layers through CLI
|
||||
if context["inputs"] != len(seq_input[0]):
|
||||
print(f'Warning: Input sequences each contain {len(seq_input[0])} entries '
|
||||
f'but {context["inputs"]} input nodes were requested.\n'
|
||||
f'\tUsing {len(seq_input[0])} input nodes instead of {context["inputs"]}'
|
||||
)
|
||||
context["inputs"] = len(seq_input[0])
|
||||
if context["outputs"] != len(set(map(tuple, seq_label))):
|
||||
print(f'Warning: Output labels contain {len(set(map(tuple, seq_label)))} possible classifications '
|
||||
f'but {context["outputs"]} output were nodes requested.\n'
|
||||
f'\tUsing {len(set(map(tuple, seq_label)))} output nodes instead of {context["outputs"]}'
|
||||
)
|
||||
context["outputs"] = len(set(map(tuple, seq_label)))
|
||||
|
||||
# Output the problem settings
|
||||
print(f'Creating a single layer neural network: \n'
|
||||
f'\tTotal input nodes: {context["inputs"]}\n'
|
||||
f'\tNumber of perceptrons in each hidden layer: {context["perceptrons"]}\n'
|
||||
f'\tTotal output nodes: {context["outputs"]}\n'
|
||||
f'\tNumber of hidden layers: {context["hidden_layers"]}\n'
|
||||
f'\tFire threshold: {context["fire_threshold"]}\n'
|
||||
f'\tError threshold: {context["error_threshold"]}\n'
|
||||
f'\tLearn rate: {context["learn_rate"]}\n'
|
||||
f'\tInitial bias: {context["bias"] if context["bias"] is not None else "Random"}\n'
|
||||
f'\tInitial edge weights: {context["weight"] if context["weight"] is not None else "Random"}\n'
|
||||
f'Network visualization settings: \n'
|
||||
f'\tGraph visualization is enabled: {not context["silent"]}\n'
|
||||
f'\tGraph visualization is horizontal: {context["horizontal"]}\n'
|
||||
f'\tGraph visualization is vertical: {not context["horizontal"]}\n'
|
||||
f'\tGraph visualization layer spacing: {context["spacing"]}\n'
|
||||
f'\tTest data input count: {len(seq_input)}'
|
||||
)
|
||||
|
||||
# Initialize a dictionary of vectors for mapping to each layer node
|
||||
# + layers['hidden'][0] = [3, 4, 5, 6] --> Hidden layer nodes are at index 3, 4, 5, 6
|
||||
layers = network_layers()
|
||||
|
||||
# A dictionary where matrix_dict['input'] maps to edge weight matrix for input_layer->first_hidden_layer
|
||||
# matrix_dict['hidden'] maps to a list of matrices; matrix_dict['hidden'][0] is edge weights for first_hl->second_hl
|
||||
# matrix_dict['output'] maps to edge weight matrix for last_hl->output_layer
|
||||
matrix_dict = get_matrix_dict()
|
||||
# Randomly generate perceptron bias if none was provided through CLI
|
||||
bias_dict = get_bias_dict()
|
||||
|
||||
info = train_network(seq_input, seq_label, bias_dict, matrix_dict)
|
||||
# Final console output for overall results
|
||||
info_total_temp = info['correct'] + info['wrong']
|
||||
acc = 100.0 * float(info["correct"] / info_total_temp)
|
||||
print(
|
||||
f'\nCorrect: {info["correct"]} \t Wrong: {info["wrong"]} \t Total: {context["cycles"] * len(seq_input)}'
|
||||
f'\nCycle 1 accuracy: {info["first_acc"]}% \tCycle {context["cycles"]} accuracy: {acc:.4f}%'
|
||||
f'\n{round(acc - info["first_acc"], 4)}% change over {context["cycles"]} cycles '
|
||||
f'\t{round((acc - info["first_acc"]) / context["cycles"], 4)}% average change per cycle'
|
||||
)
|
||||
|
||||
# All cycles have finished; Draw the network for a visual example to go with output
|
||||
if not context["silent"]:
|
||||
draw_graph(plt.subplot(), layers)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
sys.exit(main(sys.argv))
|
|
@ -0,0 +1,5 @@
|
|||
matplotlib==3.5.0
|
||||
numpy==1.21.4
|
||||
pandas==1.3.4
|
||||
scikit_learn==1.0.2
|
||||
viznet==0.3.0
|
Binary file not shown.
After Width: | Height: | Size: 114 KiB |
Loading…
Reference in New Issue