+ Allows Graph member functions to remain const + Easy to pass traversal information around as needed + Update DFS and BFS functions to return traversal information
		
			
				
	
	
		
			187 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			187 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*##############################################################################
 | |
| ## Author: Shaun Reed                                                         ##
 | |
| ## Legal: All Content (c) 2021 Shaun Reed, all rights reserved                ##
 | |
| ## About: Driver program to test object graph implementation                  ##
 | |
| ##                                                                            ##
 | |
| ## Contact: shaunrd0@gmail.com  | URL: www.shaunreed.com | GitHub: shaunrd0   ##
 | |
| ################################################################################
 | |
| */
 | |
| 
 | |
| #include "lib-graph.hpp"
 | |
| 
 | |
| 
 | |
| InfoBFS Graph::BFS(const Node& startNode) const
 | |
| {
 | |
|   // Create local object to track the information gathered during traversal
 | |
|   InfoBFS searchInfo;
 | |
| 
 | |
|   // Create a queue to visit discovered nodes in FIFO order
 | |
|   std::queue<const Node *> visitQueue;
 | |
| 
 | |
|   // Mark the startNode as in progress until we finish checking adjacent nodes
 | |
|   searchInfo[startNode.number].discovered = Gray;
 | |
| 
 | |
|   // Visit the startNode
 | |
|   visitQueue.push(&startNode);
 | |
| 
 | |
|   // Continue to visit nodes until there are none left in the graph
 | |
|   while (!visitQueue.empty()) {
 | |
|     // Remove thisNode from the visitQueue, storing its vertex locally
 | |
|     const Node * thisNode = visitQueue.front();
 | |
|     visitQueue.pop();
 | |
|     std::cout << "Visiting node " << thisNode->number << std::endl;
 | |
| 
 | |
|     // Check if we have already discovered all the adjacentNodes to thisNode
 | |
|     for (const auto &adjacent : thisNode->adjacent) {
 | |
|       if (searchInfo[adjacent].discovered == White) {
 | |
|         std::cout << "Found undiscovered adjacentNode: " << adjacent << "\n";
 | |
|         // Mark the adjacent node as in progress
 | |
|         searchInfo[adjacent].discovered = Gray;
 | |
|         searchInfo[adjacent].distance = searchInfo[thisNode->number].distance + 1;
 | |
|         searchInfo[adjacent].predecessor = &GetNode(thisNode->number);
 | |
| 
 | |
|         // Add the discovered node the the visitQueue
 | |
|         visitQueue.push(&GetNode(adjacent));
 | |
|       }
 | |
|     }
 | |
|     // We are finished with this node and the adjacent nodes; Mark it discovered
 | |
|     searchInfo[thisNode->number].discovered = Black;
 | |
|   }
 | |
| 
 | |
|   // Return the information gathered from this search, JIC caller needs it
 | |
|   return searchInfo;
 | |
| }
 | |
| 
 | |
| std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
 | |
| {
 | |
|   // Store the path as copies of each node
 | |
|   // + If the caller modifies these, it will not impact the graph's data
 | |
|   std::deque<Node> path;
 | |
| 
 | |
|   InfoBFS searchInfo = BFS(start);
 | |
|   const Node * next = searchInfo[finish.number].predecessor;
 | |
|   bool isValid = false;
 | |
|   do {
 | |
|     // If we have reached the start node, we have found a valid path
 | |
|     if (*next == Node(start)) isValid = true;
 | |
| 
 | |
|     // Add the node to the path as we check each node
 | |
|     // + Use emplace_front to call the Node copy constructor
 | |
|     path.emplace_front(*next);
 | |
| 
 | |
|     // Move to the next node
 | |
|     next = searchInfo[next->number].predecessor;
 | |
|   } while (next != nullptr);
 | |
|   // Use emplace_back to call Node copy constructor
 | |
|   path.emplace_back(finish);
 | |
| 
 | |
|   // If we never found a valid path, erase all contents of the path
 | |
|   if (!isValid) path.erase(path.begin(), path.end());
 | |
| 
 | |
|   // Return the path, the caller should handle empty paths accordingly
 | |
|   return path;
 | |
| }
 | |
| 
 | |
| InfoDFS Graph::DFS() const
 | |
| {
 | |
|   // Track the nodes we have discovered
 | |
|   InfoDFS searchInfo;
 | |
|   int time = 0;
 | |
| 
 | |
|   // Visit each node in the graph
 | |
|   for (const auto& node : nodes_) {
 | |
|     std::cout << "Visiting node " << node.number << std::endl;
 | |
|     // If the node is undiscovered, visit it
 | |
|     if (searchInfo[node.number].discovered == White) {
 | |
|       std::cout << "Found undiscovered node: " << node.number << std::endl;
 | |
|       // Visiting the undiscovered node will check it's adjacent nodes
 | |
|       DFSVisit(time, node, searchInfo);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return searchInfo;
 | |
| }
 | |
| 
 | |
| InfoDFS Graph::DFS(const Node &startNode) const
 | |
| {
 | |
|   // Track the nodes we have discovered
 | |
|   InfoDFS searchInfo;
 | |
|   int time = 0;
 | |
| 
 | |
|   auto startIter = std::find(nodes_.begin(), nodes_.end(),
 | |
|                              Node(startNode.number, {})
 | |
|   );
 | |
| 
 | |
|   // beginning at startNode, visit each node in the graph until we reach the end
 | |
|   while (startIter != nodes_.end()) {
 | |
|     std::cout << "Visiting node " << startIter->number << std::endl;
 | |
|     // If the startIter is undiscovered, visit it
 | |
|     if (searchInfo[startIter->number].discovered == White) {
 | |
|       std::cout << "Found undiscovered node: " << startIter->number << std::endl;
 | |
|       // Visiting the undiscovered node will check it's adjacent nodes
 | |
|       DFSVisit(time, *startIter, searchInfo);
 | |
|     }
 | |
|     startIter++;
 | |
|   }
 | |
| 
 | |
|   // Once we reach the last node, check the beginning for unchecked nodes
 | |
|   startIter = nodes_.begin();
 | |
| 
 | |
|   // Once we reach the initial startNode, we have checked all nodes
 | |
|   while (*startIter != startNode) {
 | |
|     std::cout << "Visiting node " << startIter->number << std::endl;
 | |
|     // If the startIter is undiscovered, visit it
 | |
|     if (searchInfo[startIter->number].discovered == White) {
 | |
|       std::cout << "Found undiscovered node: " << startIter->number << std::endl;
 | |
|       // Visiting the undiscovered node will check it's adjacent nodes
 | |
|       DFSVisit(time, *startIter, searchInfo);
 | |
|     }
 | |
|     startIter++;
 | |
|   }
 | |
| 
 | |
|   return searchInfo;
 | |
| }
 | |
| 
 | |
| void Graph::DFSVisit(int &time, const Node& startNode, InfoDFS &searchInfo) const
 | |
| {
 | |
|   searchInfo[startNode.number].discovered = Gray;
 | |
|   time++;
 | |
|   searchInfo[startNode.number].discoveryFinish.first = time;
 | |
| 
 | |
|   // Check the adjacent nodes of the startNode
 | |
|   for (const auto &adjacent : startNode.adjacent) {
 | |
|     auto iter = std::find(nodes_.begin(), nodes_.end(),
 | |
|                           Node(adjacent, {}));
 | |
|     // If the adjacentNode is undiscovered, visit it
 | |
|     // + Offset by 1 to account for 0 index of discovered vector
 | |
|     if (searchInfo[iter->number].discovered == White) {
 | |
|       std::cout << "Found undiscovered adjacentNode: "
 | |
|                 << GetNode(adjacent).number << std::endl;
 | |
|       // Visiting the undiscovered node will check it's adjacent nodes
 | |
|       DFSVisit(time, *iter, searchInfo);
 | |
|     }
 | |
|   }
 | |
|   searchInfo[startNode.number].discovered = Black;
 | |
|   time++;
 | |
|   searchInfo[startNode.number].discoveryFinish.second = time;
 | |
| }
 | |
| 
 | |
| std::vector<Node> Graph::TopologicalSort(const Node &startNode) const
 | |
| {
 | |
|   InfoDFS topological = DFS(GetNode(startNode.number));
 | |
| 
 | |
|   std::vector<Node> order(nodes_);
 | |
| 
 | |
|   auto comp = [&topological](const Node &a, const Node &b) {
 | |
|     return (topological[a.number].discoveryFinish.second <
 | |
|       topological[b.number].discoveryFinish.second);
 | |
|   };
 | |
| 
 | |
|   std::sort(order.begin(), order.end(), comp);
 | |
| 
 | |
|   // The topologicalOrder is read right-to-left in the final result
 | |
|   // + Output is handled in main as FILO, similar to a stack
 | |
|   return order;
 | |
| }
 | |
| 
 |