klips/cpp/algorithms/graphs/object/lib-graph.cpp

181 lines
6.1 KiB
C++

/*##############################################################################
## Author: Shaun Reed ##
## Legal: All Content (c) 2021 Shaun Reed, all rights reserved ##
## About: Driver program to test object graph implementation ##
## ##
## Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0 ##
################################################################################
*/
#include "lib-graph.hpp"
void Graph::BFS(const Node& startNode) const
{
// Track the nodes we have discovered by their Color
for (const auto &node : nodes_) {
node.color = White;
// Track distance from the startNode
node.distance = 0;
// Track predecessor using node that discovers this node
// + If this is the startNode, predecessor remains nullptr
node.predecessor = nullptr;
}
// Create a queue to visit discovered nodes in FIFO order
std::queue<const Node *> visitQueue;
// Mark the startNode as in progress until we finish checking adjacent nodes
startNode.color = Gray;
// Visit the startNode
visitQueue.push(&startNode);
// Continue to visit nodes until there are none left in the graph
while (!visitQueue.empty()) {
// Remove thisNode from the visitQueue, storing its vertex locally
const Node * thisNode = visitQueue.front();
visitQueue.pop();
std::cout << "Visiting node " << thisNode->number << std::endl;
// Check if we have already discovered all the adjacentNodes to thisNode
for (const auto &adjacent : thisNode->adjacent) {
if (GetNode(adjacent).color == White) {
std::cout << "Found undiscovered adjacentNode: " << adjacent << "\n";
// Mark the adjacent node as in progress
GetNode(adjacent).color = Gray;
GetNode(adjacent).distance = thisNode->distance + 1;
GetNode(adjacent).predecessor = &GetNode(thisNode->number);
// Add the discovered node the the visitQueue
visitQueue.push(&GetNode(adjacent));
}
}
// We are finished with this node and the adjacent nodes; Mark it discovered
GetNode(thisNode->number).color = Black;
}
}
std::deque<Node> Graph::PathBFS(const Node &start, const Node &finish) const
{
// Store the path as copies of each node
// + If the caller modifies these, it will not impact the graph's data
std::deque<Node> path;
BFS(start);
const Node * next = finish.predecessor;
bool isValid = false;
do {
// If we have reached the start node, we have found a valid path
if (*next == Node(start)) isValid = true;
// Add the node to the path as we check each node
// + Use emplace_front to call the Node copy constructor
path.emplace_front(*next);
// Move to the next node
next = next->predecessor;
} while (next != nullptr);
// Use emplace_back to call Node copy constructor
path.emplace_back(finish);
// If we never found a valid path, erase all contents of the path
if (!isValid) path.erase(path.begin(), path.end());
// Return the path, the caller should handle empty paths accordingly
return path;
}
void Graph::DFS() const
{
// Track the nodes we have discovered
for (const auto &node : nodes_) node.color = White;
int time = 0;
// Visit each node in the graph
for (const auto& node : nodes_) {
std::cout << "Visiting node " << node.number << std::endl;
// If the node is undiscovered, visit it
if (node.color == White) {
std::cout << "Found undiscovered node: " << node.number << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
DFSVisit(time, node);
}
}
}
void Graph::DFS(const Node &startNode) const
{
// Track the nodes we have discovered
for (const auto &node : nodes_) node.color = White;
int time = 0;
auto startIter = std::find(nodes_.begin(), nodes_.end(),
Node(startNode.number, {})
);
// beginning at startNode, visit each node in the graph until we reach the end
while (startIter != nodes_.end()) {
std::cout << "Visiting node " << startIter->number << std::endl;
// If the startIter is undiscovered, visit it
if (startIter->color == White) {
std::cout << "Found undiscovered node: " << startIter->number << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
DFSVisit(time, *startIter);
}
startIter++;
}
// Once we reach the last node, check the beginning for unchecked nodes
startIter = nodes_.begin();
// Once we reach the initial startNode, we have checked all nodes
while (*startIter != startNode) {
std::cout << "Visiting node " << startIter->number << std::endl;
// If the startIter is undiscovered, visit it
if (startIter->color == White) {
std::cout << "Found undiscovered node: " << startIter->number << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
DFSVisit(time, *startIter);
}
startIter++;
}
}
void Graph::DFSVisit(int &time, const Node& startNode) const
{
startNode.color = Gray;
time++;
startNode.discoveryFinish.first = time;
// Check the adjacent nodes of the startNode
for (const auto &adjacent : startNode.adjacent) {
auto iter = std::find(nodes_.begin(), nodes_.end(),
Node(adjacent, {}));
// If the adjacentNode is undiscovered, visit it
// + Offset by 1 to account for 0 index of discovered vector
if (iter->color == White) {
std::cout << "Found undiscovered adjacentNode: "
<< GetNode(adjacent).number << std::endl;
// Visiting the undiscovered node will check it's adjacent nodes
DFSVisit(time, *iter);
}
}
startNode.color = Black;
time++;
startNode.discoveryFinish.second = time;
}
std::vector<Node> Graph::TopologicalSort(const Node &startNode) const
{
DFS(GetNode(startNode.number));
std::vector<Node> topological(nodes_);
std::sort(topological.begin(), topological.end(), Node::FinishedSort);
// The topologicalOrder is read right-to-left in the final result
// + Output is handled in main as FILO, similar to a stack
return topological;
}